Both flying and gripping have a long tradition in the Festo Bionic Learning Network. In the form of the floating FreeMotionHandling, the developers have now combined both topics in one technology platform for the first time. The indoor flying object consists of an ultralight carbon ring with eight adaptive propellers, at the centre of which is a rotatable helium ball with an integrated gripping element. Thanks to the intelligent onboard electronics and the indoor GPS used, the ball is able to manoeuvre in all directions, pick up objects independently and put them down at designated places. Safe interaction between man and machine No pilot is required to control the flying object. However, man and ball can interact safely with one another and without problems at any time. Unlike other indoor flying objects, contact is not dangerous even in the event of a collision. That opens up new prospects for the workplace of the future: the ball could act as a flying assistance system for people – for example, when working overhead, at dizzying heights or as a feeder system in spaces that are difficult to access. Combination of several bionic principles For this purpose, the engineers made particular use of two existing developments from the Bionic Learning Network: the gripping mechanism on the FreeMotionHandling is modelled on the universally applicable FlexShapeGripper, whose working principle is derived from the tongue of a chameleon. Its elastic gripper can wrap itself around the item being gripped in a flexible and form-fitting manner and even collect more than one object in a single process. The flying helium ball itself is a further development of the eMotionSpheres. For its drive concept and for the first time, Festo designed adaptive propellers, which – thanks to their flexible membrane – can provide the same thrust in both directions of rotation. The knowledge gained from the work on the BionicOpter went into the design of the propellers. The developers took the wing principle of the artificial dragonfly a step further and transferred it to the drives, which are now used on the FreeMotionHandling as well. Festo also used the flying manoeuvres of the eMotionSpheres to show how several flying objects move in an enclosed space in a coordinated manner and without colliding. The propellers on the FreeMotionHandling are no longer located directly on the ball, unlike the eMotionSpheres. Just like the entire onboard electronics, the eight adaptive drives are fitted on the ultralight flying ring, which could thus also be used without the helium ball. The ring consists of a delicate carbon structure, whose arched form guarantees a high degree of vibrational stability. Eight printed circuit boards are embedded into the structure, on which a total of four hoist and four steering motors as well as the integrated wireless and sensor technology are located. Unique flying manoeuvres in all directions Four of the propellers are attached horizontally in line with conventional quadrocopter technology. The other four drives are aligned vertically. Together with the drive on the helium ball, this clever combination enables dynamic flying behaviour in all spatial directions. It allows the flying object to be precisely positioned without tilting as well as the flying ring to rotate around its horizontal and vertical axis. The FreeMotionHandling stands out not only due to its unique flying properties, however. By rotating the ball by up to 180 degrees, its gripping element can also be freely positioned in all spatial directions. Unlike standard quadrocopters, which are equipped with one gripper, not only can the ball control an object from above, but it can also grip it from various angles. Compared to conventional multi-axis kinematics, the FreeMotionHandling has a much greater degree of freedom. Soft gripping of various objects In order for the FreeMotionHandling to conveniently pick up different shaped objects, the developers also equipped the gripping element with an ultra-thin film, which is filled with helium. The gripper is able to draw objects in by means of a rope winch found inside the ball. The pressure in the sleeve makes it extend back out on its own, and the holding process in between is energy-free. In this way, the flying ball can also pick up several objects according to the last-in-first-out principle, transport them in its body and then dispense them at several different positions one after the other. 01: Unique flying object: besides the extended flying time, the helium ball also guarantees safe human–machine interaction 02: Endless degree of freedom: the freely orientable helium ball enables the item being gripped to be set down in the widest range of positions 03: Sophisticated drive concept: the four horizontal propellers, together with the helium ball, ensure the necessary uplift required 04: Exact flying behaviour: the four vertical steering drives are used to position the helium ball precisely in all possible directions FreeMotionHandling Flying assistant system for handling in the air 01 03 02 04 2 Festo AG & Co. KG 3 FreeMotionHandling: autonomously flying gripping sphere