
Safety engineering guidelines Pneumatic and electric solutions

You will see these symbols frequently on the following pages. They clearly and quickly point to the respective safety function.

Your partner for safety

At Festo, quality has many aspects – one of these is handling machines safely. This is the reason for our safety-oriented automation technology. These components ensure that optimum safety is achieved in the workplace.

> This brochure is intended as a guide. It covers the core questions relating to safety-oriented pneumatics and electrical engineering:

- Why use safety-oriented pneumatics?
- How can I identify the risk posed by a system or machine to the operator or user?
- Which standards and directives apply?

- Which safety measures are derived from these?
- What are the most common safety measures?

Simple and helpful: The second part of the brochure contains sample circuit diagrams for the most commonly used safety functions in conjunction with pneumatic and electric drives as well as the corresponding Festo product combinations. These can be used to implement many safety functions.

If you have more extensive requirements, our specialists worldwide will be happy to help.

Contents

Introduction	2
Directives and standards	6
Safety functions with products and solutions	27
Training and consulting	67

Reduce risk – think preventively

Machines have to be designed in a way that protects people, animals, property and the environment from harm. The goal is to prevent physical damage of any type. Using safety-oriented pneumatics from Festo provides you with the security of implementing safety measures in compliance with the EC machinery directive.

This reliably prevents collisions or uncontrolled restarts after EMERGENCY-STOP, for example. At the same time, using safetyoriented pneumatics also minimises the risk of liability claims.

The EC Machinery Directive specifies a risk analysis and assessment for machines. These have helped to develop and define protection goals. The protection goals are achieved using various safety functions.

Safety-oriented solutions from Festo, in the form of

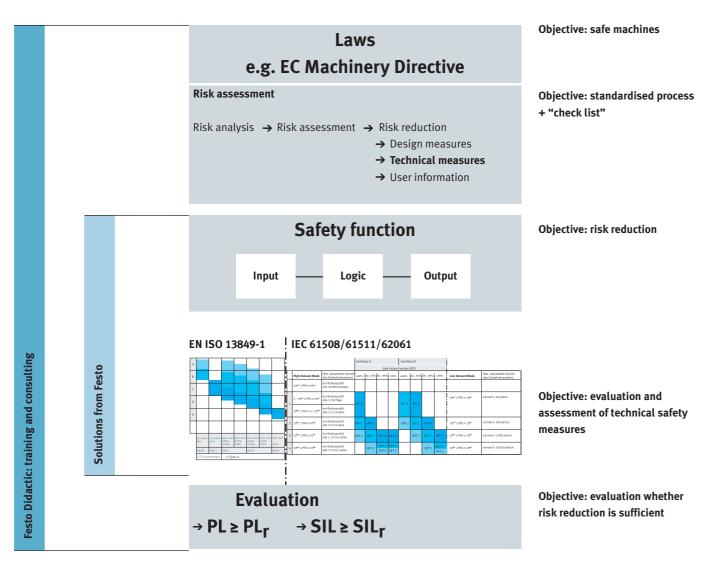
- Components
- Circuits
- Engineering

make it easy to achieve your safety objectives. Safe operation of machines should be possible in all modes and stages of their service life. Safety-oriented solutions from Festo provide you with proposals for

- Commissioning
- Automatic/manual operation
- Setting up
- Risk situations and emergency functions, such as safe stop, safe exhausting.
- Restart -> Protection against unexpected start-up
- Service/maintenance

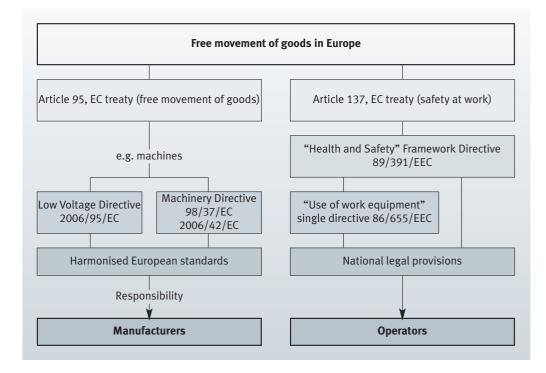
In addition to this, if errors occur, they must not lead to failure of the safety functions, depending on their hazard potential.

Simple but safe


As a general rule, the simpler the safety technology used in the application, the more efficient it is. The complexity of safety engineering is in the variety of state combinations and transitional states. As a result, it would seem virtually impossible to implement standardised safety engineering concepts.

Due to their flexible applications, Festo drive systems can be incorporated in the risk analysis and assessment for each machine, depending on the application. To ensure that the electrical safety functionality of your control system is a suitable continuation of in your safety concept for pneumatic components, Festo offers solutions based on risk analyses and risk assessments for the most commonly used applications.

Technical safety conditions

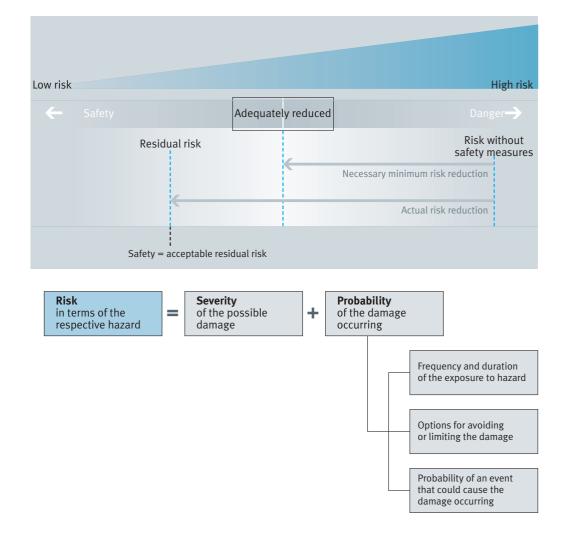

There are global framework conditions to ensure that machinery can be built and operated safely. Almost all laws require a risk assessment which reveals risks and results in risk minimising measures.

Basic safety requirements in the manufacturing industry

As part of the development of the single European market, the directives for machine construction in the manufacturing industry were harmonised.

Directives are comparable with laws. Among others, the EC machinery directive is applicable for machine construction. The primary aim of the EC machinery directive is to specify basic health and safety requirements in relation to the design and construction of machines. The CE mark indicates compliance with the machinery directive. Harmonised standards provide assistance in complying with the EC machinery directive. Harmonised standards are listed in the Official Journal of the European Communities. Applying these results in what is known as the "presumption of conformity", which reinforces the legal security of operators and manufacturers.

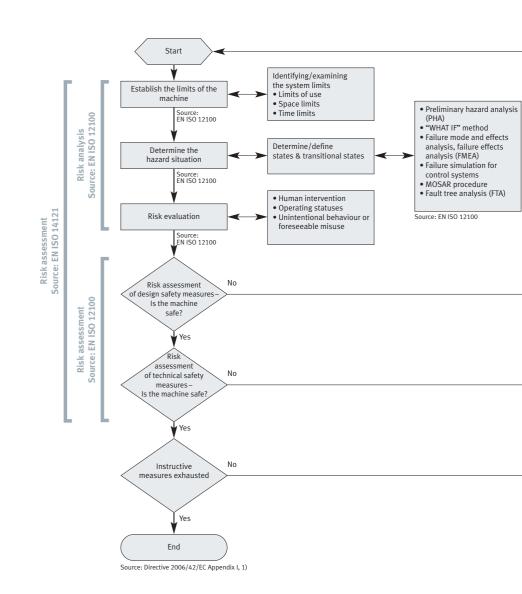
Basic standards for designing control functions


Harmonised standards that relate to machine safety serve to reduce safety risks to an acceptable minimum, as per the EC Machinery Directive.

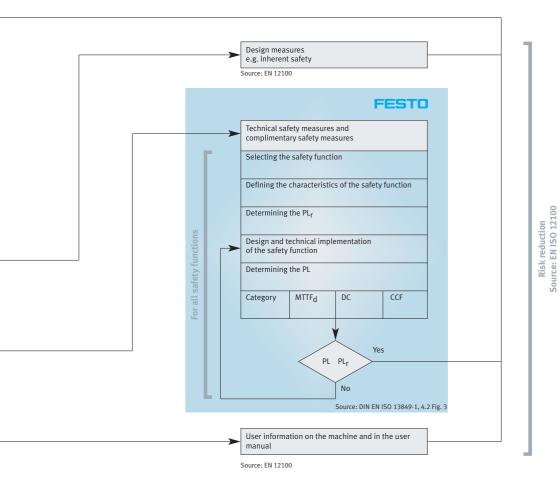
Design and risk assessment of machinery	Electrical safety aspects
EN ISO 12100 Safety of machinery General principles for design	EN 60204-1 Safety of machinery Electrical equipment of machines, Part 1: General requirements
Functional and safety-oriented requirements for safety-related control systems	
Designing and implementing safety-related control s EN 62061 Safety of machinery Functional safety of electrical/electronic/ programmable safety-related electronic control systems Any architectures Safety integrity level (SIL) SIL 1, SIL 2, SIL 3	ystems
DIN EN ISO 13849-1 Safety of machinery Safety-related parts of control systems, Part 1 – General p	rinciples for design
Designated architectures (categories) Performance Level (PL) PLa, PLb, PLc, PLd, PLe	

Definition and concept of risk

Risks are the result of hazards and relate to the gravity of possible damage and the probability of the damage occurring.



Risk assessment


Directives and standards describe the risk assessment process. All manufacturers are obligated to perform a risk assessment. This is followed by a risk evaluation and appropriate risk reduction measures must be implemented as required.

Focusing on risk reduction

This guide is primarily concerned with the area of risk reduction in the form of technical safety measures. We assume that all possible design measures for reducing risk have already been explored.

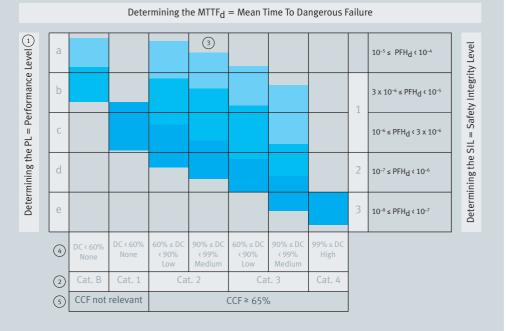
When assessing risk and identifying the necessary performance level, the degree of risk reduction is established. Whether or not the required risk reduction level has been achieved depends on the following parameters:

1) Control architecture

2) Mean time to dangerous failure (MTTF_d)

3) Diagnostic coverage (DC)

4) Common cause failures (CCF)


In all cases, the performance level (PL) must be equivalent to at least the required PL_r.

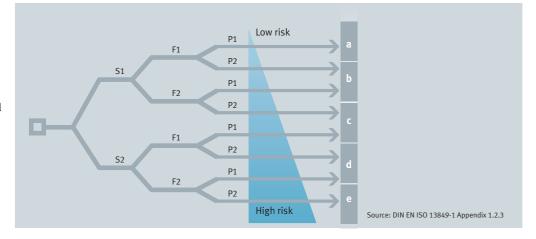
Evaluating technical safety measures – Determining the performance level

The figure shows the simplified procedure for determining the performance level (PL) of a safety function. The PL is a function of categories B to 4, diagnostic coverage "none to high", various MTTF_d areas and the Common Cause Failure.

The PL can be assigned to a specific SIL level. However, it is not possible to infer the PL from the SIL. Apart from the average probability of one dangerous failure per hour, other measures are needed to achieve a specific PL.

- (1) Risk graph: Which Performance Level is required? PL a to e
- (2) How is the control chain or safety function structured? Category B to 4
- Quality of components in the control chain: Determining the MTTF_d for the entire process chain, from the sensor to the actuator!
- Degree of diagnostic coverage: which dangerous faults are detected?
- (5) Common cause failures (CCF): measures for avoiding CCF

Evaluation	MTTFd
Low	3 years ≤ MTTF _d < 10 years
Medium	10 years ≤ MTTF _d < 30 years
High	30 years ≤ MTTF _d < 100 years


Source: DIN EN ISO 13849-1 Chapter 4.5.2

Application of 13849-1 Step 1: determining the required performance levels

The graph for determining the required performance level is based on identifying the risk and the resulting necessity for reducing this to an acceptable level.

Low risk results in PL = a (minimal measures for risk reduction). High risk results in PL = e (comprehensive measures for risk reduction).

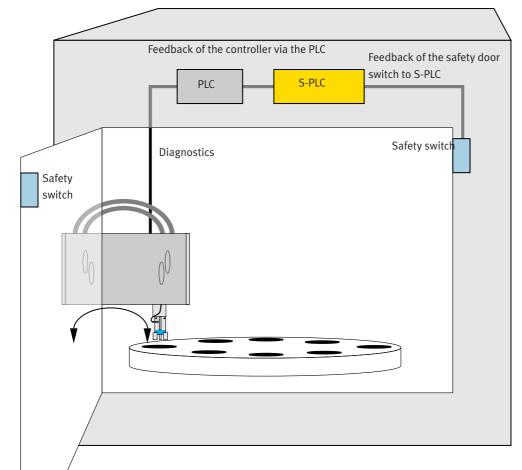
Technically speaking, PLr (required) is a "nominal value", which is the minimum that should be achieved by the real structure.

Statements from EN 62061 are also quoted here for a better assessment of risks. The risk is always evaluated in the same way, that is as the severity of possible damage and the probability that damage will occur.

			Statements from other standards
DIN E	N ISO :	13849-1	EN 62061
S Seve	erity of S1 S2	injury Slight (normally reversible injury) Serious (normally irreversible injury, or death)	Irreversible injury (4 points) (death, loss of eye or arm) Irreversible injury (3 points) (broken limb, loss of finger) Reversible injury (2 points) (requires further medical attention from a doctor) Reversible injury (1 point)
Freque	ency ar F1 F2	nd/or duration of exposure to hazard Seldom to less often and/or brief Frequent to continuous and/or long	Frequency (with a duration > 10 min) < 1 h (5 points) > 1 h to < 1 day (5 points*) > 1 day < 2 weeks (4 points*) > 2 weeks to < 1 year (3 points*) > 1 year (2 points*) * If exposure lasts less than 10 min, this can be reduced one level
Ρ	Possil P1 P2	bility of avoiding the hazard Possible under specific conditions Scarcely ever possible	Impossible (5 points) Seldom (3 points) Probable (1 point)

Overview of control architectures

		fety principles must be 349-1 Pt. 6.2.3/DIN EN I		1/D.1)	
	Suitable design (DIN EN ISO 138	for external influences 349-1 Pt. 6.2.3)			
1 channel		1 safety principles must 349-2 B.4; refer to DIN E		/B.2/D.2)	
0 Fault safety (DIN EN ISO	1 channel		1 channel	2 channels	2 channels
13849-1 Pt. 6.2.3)	SPR/CS components (DIN EN ISO 13849-2 A O fault safety (DIN EN ISO 13849-1 F		100x test of the function before the request by the machine controller (DIN EN ISO	(DIN EN ISO 13849-1 Pt. 6.2.7) Some, but not all faults are detected	(refer to DIN EN ISO 13849-1 Pt. 6.2.7) Every fault must be detected before or during the next
Category B	Compliance with fundamental and proven safety principles Compliance with appropriate standards Category 1	Components proven in operation. Already used in similar applications (refer to DIN EN ISO 13849-2 B.4)	13849-1 Pt. 6.2.5) O Fault safety between the test phases	before or during the next request 1 Fault safety Multiple undetected faults lead to the loss of SF	request
			Category 2	-	
Category B or 1	im > 0			Category 3	Category 4
ategory 2		Category 3		Category 4	
	0	l1 im			
ТЕ	іт 🗩 ОТЕ	12 ^{im}		I2 im	



Category 2 application: Pick & Place

Pneumatic implementation of a category 2 solution

In this example, the parts relevant for the safety function are also used for the normal controller of the system. This is used for testing. If this is not possible, it is easier to implement Category 3 for many solutions in pneumatic safety controls, even if a Category 2 would actually be sufficient, as the safety function for this is implemented via diversity and not using 100x testing.

The circuit must be tested at least 100 times before the safety function is requested. This test of the pneumatic components must be performed without causing hazards.

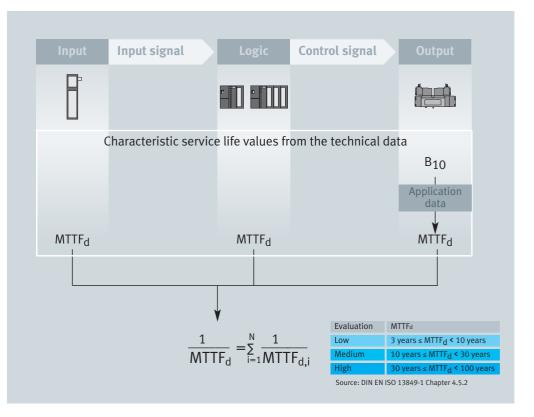
Sporadic manipulation after more than 100 cycles. Manipulation via the safety door. Testing should not trigger a hazard.

Defining the diagnostic coverage (DC)

This table shows a summary of sources of error related to pneumatics, taken from DIN EN ISO 13849-2. Under certain conditions, it is possible to exclude faults. The requirements for excluding a fault are described in detail in DIN EN ISO 13849-2. Faults must be examined and evaluated in the context of each application to establish whether the fault has a dangerous effect on the safety function. Depending on the construction principle and the design of components, different results may arise for different applications; in other words, a specific product may be suitable for one application but not for another. The design engineer for the installation is responsible for checking this.

Sources of error Products	Change to the response times	Non-switching/ not switching back	Auto-switching	Leakage	Change to the leakage over a long period of use	Cracking of the housing/ connecting piece/tubing	Change to the flow rate without assistance (adjustable)	Change to the flow rate without assistance (fixed)	Change to the behaviour without assistance	For proportional flow valves: unintentional change to the setting value	Automatic change to the adjusting device
Directional control valves											
Shut-off/non-return/quick exhaust/shuttle valves											
Flow control valves											
Pressure limiting valves											
Pipelines											
Tubing lines											
Connecting components											
Pressure intensifier and pressure medium converter											
Filters											
Lubricators											
Silencers											
Energy storage device and reservoir											
Sensors											
Logic elements (AND/OR)											
Delay elements											
Transformers (pressure switch, position switch and amplifier)											
Cylinders											

Unintentional loosening of the operating elements in the adjusting device	Fault in the connecting component (ripped off/out, leakage)	Clogging (blockage)	Bending	Change to the recording and output characteristics	Failure of the end-position cushioning	Loosening of the piston/ piston rod connection	Pressure rise	Pressure failure	Electrical power failure	
										∇ (Recognised
										$DC_{1} = \frac{\sum_{dangerous \ errors)}^{(Recognised)}}{\sum_{errors)}^{(Total \ dangerous}}$



DC	$\frac{DC_1}{MTTF_{d1}} + \frac{DC_2}{MTTF_{d2}}$	+ +	MTTF _{dN}
DC _{avg} =	$\frac{1}{\text{MTTF}_{d1}} + \frac{1}{\text{MTTF}_{d2}}$	+ +	$\frac{1}{\text{MTTF}_{dN}}$

Defining the mean time to dangerous failure (MTTF_d)

The mean time to dangerous failure (MTTF_d) is initially determined for each redundant channel. Next, a total MTTF_d value is determined for both channels. This value is given in years and is a qualitative statement of the safety function. In line with the applicable standard, the technical safety measure is assessed and given one of three classifications: low, medium and high.

B10 value

Definition

>

Time at which statistically 10% of test specimens have failed (determined per DIN EN ISO 19973).

Per definition, 10% of the test specimens have failed at this time. A component can also fail before the B10 value is reached. The service life cannot be guaranteed.

Dangerous failures:

In relation to the safety of machines/the EC Machinery Directive/ISO 13849-1, only dangerous failures are relevant. It depends on the respective application whether the failure is a dangerous failure. If no information is possible/available on the number of dangerous failures, ISO 13849 permits the assumption that every second failure is dangerous. Therefore, it can be assumed that $B10_d = 2*B10.$

B10: Statistical probability of failure B10d: Statistical probability of failure due to dangerous faults

For which products do I require a B10d value?

For all products which are subject to wear, are used in safety-related parts of a controller and directly contribute to the execution of a safety function, such as valves, clamping cartridges, for example.

This does not apply to fittings, tubes, angle brackets, fixtures, etc.

For which products do I need an MTTF_d value?

For all products which are used in safety-related parts of a controller

Where

and directly contribute to the execution of a safety function, such as controllers, fieldbus nodes which serve to detect dangerous situations, sensors (test channel Category 2).

Do I need an MTTF_d value or B10_d value for components which are used for monitoring purposes in safety-related parts of controllers?

No, for SRP/CS Category 3 and 4. Yes, for SRP/CS Category 2 in the test channel.

Defining the MTTF_d

The MTTF_d value is application-dependent and describes the mean period to a dangerous failure of a system part.

Formula for determining the MTTF _d value for a mechanical element in a channel	$MTTF_{d} = \frac{B10_{d}}{0.1 \bullet n_{op}}$	B10 _d [cycles] = Mean number of cycles, up to 10% of the components fail dangerously B10 _d = $2xB10$
Mean number of annual actuations n _{op} for the mechanical element	$n_{op} = \frac{d_{op} \bullet h_{op} \bullet 3600s/h}{t_{cycle}}$	hop [h/d]: Operating hours/day dop [d/anno]: Operating days/year tcycle [s]: Cycle time MTTF _{dC} Values f

Calculating the total MTTFd for two different channels

MTTF_{dC1} and MTTF_{dC2}: Values for two different, redundant channels. If the $MTTF_d$ of a channel is more than 100 years, 100 years is used for further calculation.

Safety engineering coefficients – Sistema library

Sistema software from the Institute for Occupational Health and Safety [Institut für Arbeitsschutz (IFA)]

The SISTEMA software assistant (safety of controllers in machinery) provides support in evaluating the safety of controllers as part of DIN EN ISO 13849-1. The Windows tool maps the structure of the safety-related control parts (SRP/CS, Safety-Related Parts of a Control System) on the basis of the designated architectures and calculates reliability values at various levels of detail, including the Performance Level (PL) reached. The software is available as a free download from the following link: www.dguv.de/ifa/de/pra/softwa/sistema/index.jsp

Sistema database from Festo

The Sistema software is only the tool for performing the safety engineering evaluations. This is based on databases with safety-related specifications for products and solutions. There are numerous libraries on the homepage of the IFA.

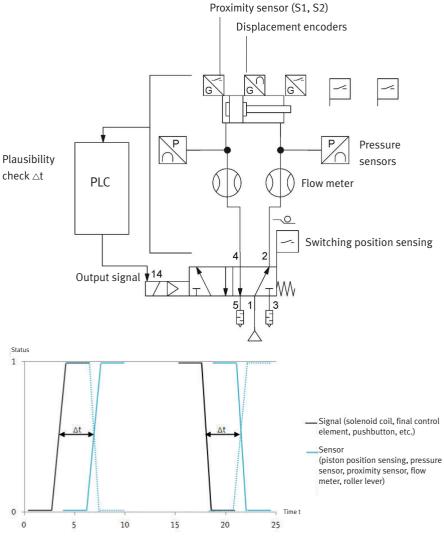
The library of Festo's safety engineering coefficients are available to download on Festo's homepage: www.festo.com/sicherheitstechnik www.festo.com/safety

Pneumatic diagnostic options

Plausibility check

The PLC checks whether a signal change has taken place within a specific period t, and if the desired change in status has occurred.

A plausibility check reveals


- faults with different causesSolenoid coils, final control element or pushbutton generate a signal
- Energy switching element, a valve in this case

Change of status

- From 0 to 1 or
- From 1 to 0

Sensors

E.g. piston position sensing, pressure sensor, proximity sensor, displacement encoder or flow meter must register the change of switching status

How test pulses affect solenoid valves

Fail-safe output modules of safety control systems and electronic safety switchgear connect test pulses to their outputs for diagnostic purposes. On the one hand, these test pulses help detect cross circuits or to check the function of the outputs relative to their deactivation efficiency. Depending on the manufacturer, these test pulses have varying pulse widths of up to several milliseconds. For example, a controller manufacturer deactivates their outputs for a period of several milliseconds in the event of an ON signal. In the event of an OFF signal, the outputs are switched on for up to 4 ms to check whether they can be deactivated safely if a safety function request is made.

How does a solenoid valve react to these test pulses?

If a solenoid valve is connected to a failsafe output, the test pulses often cause the LED on the solenoid valve to flicker at the same speed as the pulses and a clicking can be heard in the solenoid valve. That clearly shows that these test pulses have an effect on the solenoid valve. Many modern solenoid valves consist of a magnetic system, which actuates a pilot valve via an armature, which in turn actuates the main part, which then controls the actuators. Even if the switching times for activation or deactivation, which are listed in the technical data, are far higher than the duration of the test pulses, the armature reacts much earlier. In some solenoid valves, this occurs with blackout times of just 0.1 ms.

Does this result in accidental deactivation of a solenoid valve in the event of an ON signal?

This reaction in the armature generally indicates a reduction of the holding force for the armature. In turn, this means that unfavourable vibrationshock conditions on the machine could result in an unplanned deactivation of the pilot valve and thus of the power valve.

Does this result in accidental activation of the solenoid valve in the event of an OFF signal?

Although these positive test pulses of several milliseconds cause the LED on the solenoid valve to flicker at the same speed as the test pulses, it is extremely rare for it to cause the solenoid valve to switch.

In some solenoid valves, the armature already reacts after just 0.4 ms. This means that the armature in the solenoid system, which controls the pilot valve of the named solenoid valves, moves. This reaction in the magnetic system generally indicates a reduction of the break-away force for the armature. In turn, this means that unfavourable vibrationshock conditions could result in an unplanned activation of the pilot valve, and thus of the power valve.

Does my controller still comply with the EC Machinery Directive?

As long as the basic safety and health protection requirements from the EC Machinery Directive are complied with, it is in compliance with the EC Machinery Directive. If we assume that in SRP/CS, the deactivation of the solenoid valves represents the safe status of the function, hazards still will not result.

Summary:

All measurements at Festo were performed at worst case conditions. That means in the event of deactivation with minimal pressure and minimal output voltage. As the pressure and output voltage values approach the upper limits, the

sensitivity of the solenoid valves decreases. In the event of activation, the behaviour is reversed. In summary, operating our solenoid valves on failsafe outputs does not always comply with the intended use of our solenoid valves. The minimal movements caused by the test pulses could result in aging of the magnetic system. This, in turn, can adversely affect the service life of the solenoid valve.

What are the alternatives for safe operation of solenoid valves?

- In any case, you must ensure that the system complies with the specifications in the technical data and operating instructions.
- If possible, switch off the test pulses. Incorporate the MTTF values of the failsafe output when calculating the failure probability of the safetyrelated part of the controller

(SRP/CS). Check whether the safety level of your SRP/CS is still reached despite the deactivation of the test pulses of the failsafe outputs. The MTTF of the entire control chain must comply with the required MTTF. This solution is simple, practical and, in particular, can be implemented without taking additional time.

- Actuate the solenoid valve via a non-pulsed output of a standard PLC. For example, connect a normally open contact of a safety shutdown relay between the solenoid valve and the output, which guarantees the safety function when needed.
- Disconnect the solenoid valve from the test pulses by actuating it via a relay contact, which is supplied by a nonpulsed supply voltage. The relay is actuated from a safe output (even here, the test pulses must be observed).

- Use filter clamps, as close as possible to the solenoid valve, to filter out the test pulses.
- The cable length or the cable diameter used (like a capacitor) has a damping effect on the test pulse reaction of the solenoid valve. A short cable has a negative effect (the test pulse reaches the coil of the solenoid valve in an attenuated state), a long cable has a positive effect (the test pulse is unattenuated when it reaches the coil of the solenoid valve).

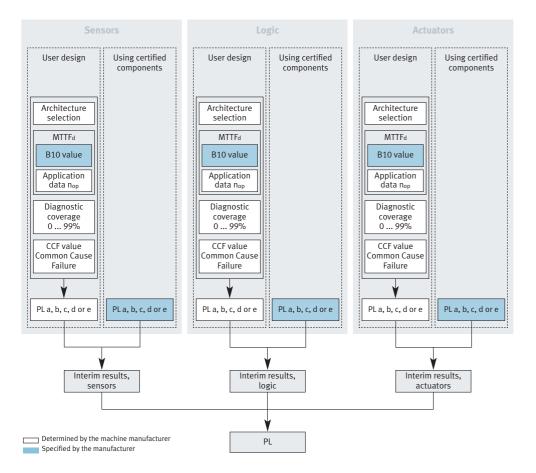
Where can I find the maximum pulse length of a solenoid valve?

During the design phase of a safety-related part of a controller, always contact the manufacturer of the solenoid valve, and ask for the maximum pulse widths for test pulses.

Application 13849-1 Step 5: Defining Common Cause Failures

Common Cause Failures CCF

No.	Measure against CCF	Points S
1	Separation/ Segregation	
	Physical separation between signal paths:	15
	separation in wiring/piping, sufficient clearances and creepage distances on printed-circuit boards.	
2	Diversity	
	Different technologies/design or physical principles are used,	20
	for example:	
	first channel programmable electronic and second channel hardwired, kind of initiation,	
	pressure and temperature, Measuring of distance and pressure,	
	digital and analogue. Components of different manufacturers.	
3	Design/application/experience	
3.1	Protection against over-voltage, over-pressure, over-current, etc.	15
3.2	Components used are well-tried and attention has been paid	5
	to the ambient conditions	
4	Assessment/analysis	
	Are the results of a failure mode and effect analysis taken into account	5
	to avoid common-cause failuresin design.	
5	Competence/training	
	Have designers/maintainers been trained to understand the causes and consequences	5
	of common-cause failures?	
6	Environmental	
6.1	Electromagnetic Compatibility (EMC)	25
	Has the system been checked for electromagnetic immunity,	
	e.g. as specified inrelevant standards against CCF?	
6.2	Other influences	10
	Have the requirements for immunity to all relevant environmental influences such as,	
	temperature, shock, vibration, humidity	
	(e.g. as specified in relevant standards) been considered?	
Total		[max. possible 100]
Measu	res to avoid CCF	Total points S
Requir	ements reached	65% or better
Proces	s failed; select additional measures	less than 65%


Which common cause failures can arise? The measures against these failures should be recorded in a grid. For each of the listed measures, either all the points are assigned or none. If a measure is only partially fulfilled, the number of points is zero.

Combination or series connection of SRP/CS to achieve an overall performance level

Safety functions can be implemented using multiple SRP/CS connected in series. The performance of each SRP/CS is either determined by the user or, ideally, specified by the manufacturer of the component in the technical data for the certified components.

The lowest performance level must be determined to establish the overall performance level, which in turn has to be determined based on the standard for the overall PL.

Simplified procedure for
determining the PL for
components with PL

For series connection, the number of the lowest PL is determined. This result can be used to determine the overall PL using the table.

Lowest PL PL _{low}	Number of the lowest PL N _{low}	Total system PL
a	>3	Not permitted
	≤3	a
b	>2	а
	≤2	b
С	>2	b
	≤2	С
d	>3	C
	≤3	d
е	>3	d
	≤3	е

Safety component

What is a safety component? Art. 2 c) 2006/42/EC

- It guarantees a safety function
- It is marketed separately
- Its failure and/or malfunction of the component endangers safety of persons and it can be replaced by standard components for the functioning of the machine.

The EC Machinery Directive defines whether a component is a safety component or not, and this depends on how it is marketed. The term safety component generally does not indicate the safety level or reliability of a component. The EC Machinery Directive does not prescribe the use of safety components. It only describes the conformity assessment procedure for components which correspond to the definition for safety components. Manufacturers of safety components must comply

with the conformity assessment procedures to market the safety components in the EEA. For the user, it makes no difference whether a safety function is implemented via a purchased safety component or an internally developed and internally evaluated safetyrelated part of the controller to EN ISO 13849-1.

What is the difference between a safety component and a safety-related part of

- a controller (SRP/CS)?
- A safety component is evaluated by the manufacturer of the safety component for its safety function.
- A safety-related part of a controller (SRP/CS) is developed by the manufacturer of a machine, and evaluated for its safety level and function as part of the manufacturing of a machine.

Examples of safety components

- Light curtain
- EMERGENCY STOP relay
- Safety door switch
- EMERGENCY STOP command device
- Safety relay

Do vales with switching position sensing come under the definition "Valve with failure detection? And do they have to be marketed as safety components?

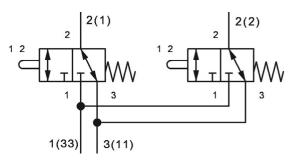
 No – switching position sensing can be used to implement failure detection, but does not detect the failure without further circuitry or the evaluation via a PLC.

Front panel valve SV/O

Notes

The front panel valve is not a complete safety solution. It can be used as part of a solution.

Special features


Can be combined with various actuator attachments

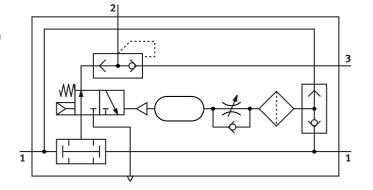
- Mushroom actuator PR
- Mushroom pushbutton with detent, lockable PRS
- Key actuator Q with key

Cat.	Can be used in
PL	higher category
DC	systems.
CCF	
Channels	2
Safety component	No
to MD 2006/42/EC	

184135 SV/0-3-PK-3x2	Part no.	Туре
	184135	SV/0-3-PK-3x2

All specified values are maximum values, which can be achieved via correct operation and interconnection of the SRP/CS.

See the technical data of the individual products for detailed information. Please observe the legal information on page 73.



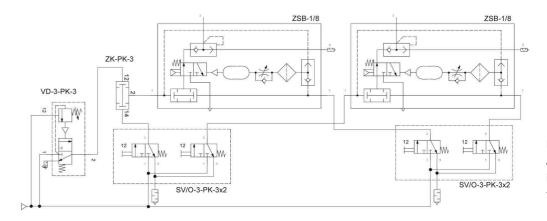
Two-hand control block

Cat.	Can be used in	
PL	higher category	
DC	systems.	
Channels	1	
DIN EN 574	IIIA	
Safety component	Yes	
to MD 2006/42/EC		

Type ZSB-1/8 All specified values are maximum values, which can be achieved via correct operation and interconnection of the SRP/CS.

Notes

The two hand control block is not a complete safety solution. It can be used as part of a solution.


See the technical data of the individual products for detailed information. Please observe the legal information on page 73.

Part no.

3527

Double two-hand control block

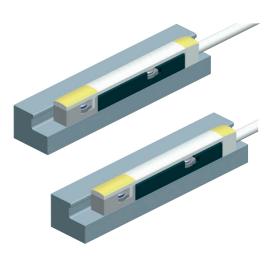
Double-channel

Always check that each channel in multi-channel solutions fulfils the safety function.

Diagnostics

Error detection is performed via internal diagnostics.

Cat.	3	All s
PL	d	maxi
MTTF	High	can l
	(assumption)	corre
DC (internal)	Average	inter
CCF	> 65%	SRP,
Channels	2	
EN 574-1	IIIB	
Safety component	No	
to MD 2006/42/EC		


All specified values are maximum values, which can be achieved via correct operation and nterconnection of the SRP/CS.

Part no.	Туре
3527	ZSB-1/8
184135	SV/0-3-PK-3x2
9270	VD-3-PK-3
6680	ZK-1/8-B

See the technical data of the individual products for detailed information. Please observe the legal information on page 73.

Reversing the safety function

: Out	put	

Notes

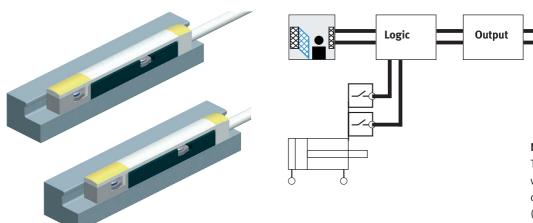
The sensors permit reliable position sensing. It is then possible to switch between different safety functions.

Switches are mechanically connected, are protected against manipulation and securely mounted.

Sample application:

In two-hand operation, the cylinder advances to an uncritical position where the position of the hands no longer needs to be blocked. The two-hand switches can now be released.

Sensor function		
Cat.	3	All
PL	d	ma
DC	Medium	car
CCF	> 65%	cor
Channels	2	cor
Safety component	No	
to MD 2006/42/EC		


ll specified values are naximum values, which an be achieved via orrect operation of the omponent.

Part no.		Туре
575815	SAMH-S-N8-S-MK	Mounting kit (complete)
575816	SAMH-S-N8-L-MK	Mounting kit (complete)
575817	SAMH-S-N8-S-SC	Cover (spare part)
575818	SAMH-S-N8-L-SC	Cover (spare part)

See the technical data of the individual products for detailed information. Please observe the legal information on page 73.

Cylinder as a door drive

Sensor function]
Cat.	3	All specif
PL	d	maximun
DC	Medium	can be ac
CCF	> 65%	correct o
Channels	2	of the co
Safety component	No	
to MD 2006/42/EC		

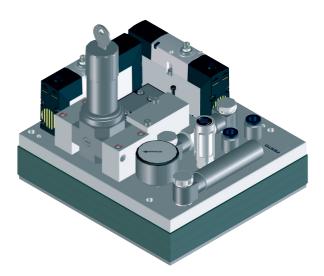
Il specified values are naximum values, which an be achieved via prrect operation f the component.

Part no.		Туре
575815	SAMH-S-N8-S-MK	Mounting kit (complete)
575816	SAMH-S-N8-L-MK	Mounting kit (complete)
575817	SAMH-S-N8-S-SC	Cover (spare part)
575818	SAMH-S-N8-L-SC	Cover (spare part)

See the technical data of the individual products for detailed information. Please observe the legal information on page 73.

Notes

The position of the guard door, which is pneumatically activated, can be reported reliably (SAMH-S) and directly via the drive. Additional sensing per EN 1088 is not necessary.


The guard door is opened by a cylinder.

If the door is open, the cylinder is not in the normal position. This is detected by the safe position encoders; the system remains at rest.

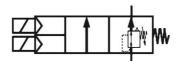
Switches are mechanically connected, are protected against manipulation and securely mounted.

Reduce valve terminal pressure

Cat.	3	All specified valu
PL	e	maximum values
DC	Medium	which can be acl
	(integrated	via correct opera
	diagnostics)	of the componer
CCF	>65%	
Channels	2	
DIN EN 574	IIIB	
Safety component	No	
to MD 2006/42/EC		
Part no.		Flow rate

ues are es, hieved ation nt.

500 l/min


₽ Voltage 24 V DC

Technical data

Pressure 3 ... 8 bar

Temperature range 0 ... +40°C

Flow rate ISO 1: approx. 500 Nl/min

Safety function

The time between the two actuating signals should not exceed 200 ms. This meets

DIN EN 574 IIIB.

Protection against unexpected start-up (two-channel), with simultaneous actuation of both solenoid coils.

Please observe the legal information on page 73.

ISO 1

571887

Dual-pressure regulator

Cat.	Can be used in	Al
PL	higher category	m
DC	systems.	wł
Channels	1	via
Safety component	No	an
to MD 2006/42/EC		of

Il specified values are naximum values, which can be achieved ia correct operation nd interconnection f the SRP/CS.

Part no.	Туре
550588	LR-D-MINI-ZD-V24-SA
567841	LR-D-MINI-ZD-V24-UK-SA

Notes

The dual-pressure regulator is not a complete safety solution. It can be used as part of a solution.

Special features

Diaphragm pressure regulator with secondary venting for setting two different initial pressures in one device. Switching from the lower to the higher value occurs electrically.

Regulator pressure P2 0.5 ... 7 bar

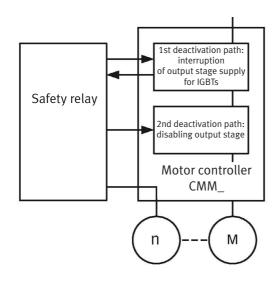
Supply pressure P1

Flow rate up to 1300 l/min

Temperature range -10 ... +60°C

Safely limited speed

With external safety relay


Power supply

Cat.	1 or 2	All sp
PL	С	maxir
DC	Not relevant	can b
CCF	Not relevant	corre
Safety component	No	of the
to MD 2006/42/EC		

All specified values are maximum values, which can be achieved via correct operation of the component.

Part no.	Туре
561406	CMMD-AS-C8-3A
550041	CMMP-AS-C2-3A
550042	CMMP-AS-C5-3A
551023	CMMP-AS-C5-11A-P3
551024	CMMP-AS-C10-11A-P3
1366842	CMMP-AS-C20-11A-P3
552741	CMMS-AS-C4-3A
547454	CMMS-ST-C8-7

See the technical data of the individual products for detailed information. Please observe the legal information on page 73.

Valve block, exhausting

Cat.	3	Al
PL	e	ma
DC	Medium	са
	(integrated	co
	diagnostics)	of
CCF	> 65%	
Channels	2	
DIN EN 574	IIIB	
Safety component	No	
to MD 2006/42/EC		

 Part no.
 Type

 573619
 ISO 1

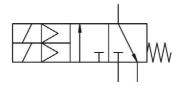
 572788
 ISO 2

Il specified values are naximum values, which an be achieved via orrect operation f the component.

Technical data

Pressure 3 ... 8 bar

Temperature range 0 ... +40°C


Flow rate ISO 1: approx. 500 NI/min

Flow rate for ISO 3: approx. 1200 NI/min

Safety functions

Safe exhausting (two-channel) when the coils are switched off.

The time between the two actuating signals should not exceed 200 ms. This meets DIN EN 574 IIIB.

Safe pressure build-up

MS-6-SV-E

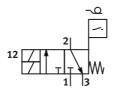
Cat.	4	A
PL	e	n
DC	integrated	c
	Internal sensing	С
	of the piston-	C
	position	
Channels	2	
Certificate	IFA	
Safety component	Yes	
to MD 2006/42/EC		

All specified values are maximum values, which can be achieved via correct operation of the component.

Voltage 24 V DV

Technical data

Deperating pressure 3.5 ... 10 bar


- Temperature range -10 ... +50°C
- Flow rate (exhausting) Up to 9000 l/min

Special features

Electrical interface Sub-D 9-pin

Possible special plug NECA-MP3-SA

The NECA-MP3-SA permits actuation of the MS6-SV with signals, whereby the enable signals EN1 and EN2 are galvanically isolated from the supply of the MS6-SV. Galvanic isolation is guaranteed via 2 optocouplers.

548715 MS6-SV-1/2-E-10V24-AG 548717 MS6-SV-1/2-E-10V24-SO-AG 552252 UOS-1 573695 Multi-pin plug NECA-S1G9-P9-MP3-SA 548719 Multi-pin plug NECA-S1G9-P9-MP1 552703 Multi-pin plug NECA-S1G9-P9-MP3

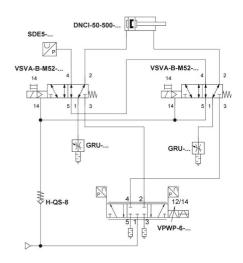
Туре

MS6-SV

MS6-SV-1/2-E-10V24-AD1

See the technical data of the individual products for detailed information. Please observe the legal information on page 73.

Part no.


548713

562580

Safety function for servopneumatics

Switching off power

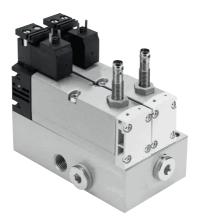
Cat.	3	All sp
PL	d	maxir
DC	Medium	can b
CCF	> 65%	correc
Channels	2	of the
Safety component	No	
to MD 2006/42/EC		

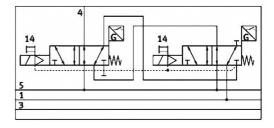
Il specified values are naximum values, which an be achieved via orrect operation f the component.

Part no.	Designation	Description
550 171	VPWP-6-L-5	Proportional valve, component of the servopneumatic system
		as a first channel
534 546	VSVA-B-M52-MZH-A1-1R5L	5/2 single solenoid switching valve, with spring return and
161 109	NAS-1/4-01-VDMA	external auxiliary pilot air as a 2nd channel. The size (flow
		rate) is based on the proportional valve.
535 413	DNCI-50-500-P-A	Standard cylinder with displacement encoder
542 897	SDE5-D10-FP-Q6E-P-M8	Pressure switch for diagnostics of the emergency stop valves
		(VSVA)
9 517	GRU-1/4-B	Flow control/silencer for defined exhausting of the cylinder
153 464	H-QS-8	Non-return valve

See the technical data of the individual products for detailed information. Please observe the legal information on page 73.

Features


- Protection against unexpected start-up (2-channel)
- Safety measure: pressure release (1-channel)
- Safety measure: stop (1-channel)
- Stop category: "0" (EN 60204-1)
- Pressure supply not deactivated


Notes

- This set-up is only recommended for horizontal axes.
- The axis can still move after an emergency stop. The overtravel depends on the current speed and the moving mass.
- On reactivation, the drive can move, depending on the activation conditions.
- Use of a braking/clamping unit, together with the servopneumatic controller, can prevent a movement on restart.

VOFA-3/2 Safety valves for presses

Diagnostics

Diagnostics via evaluation of the actuation and feedback signal must be carried out via software

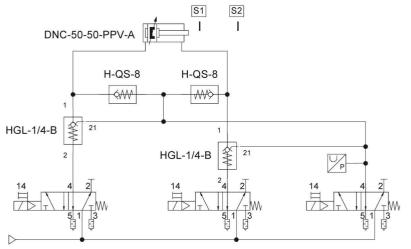
Fault exclusion

Fault exclusion for valves that are jammed or haven't switched.

Cat.	4	Α
PL	e	n
DC	Switching position	V
	sensing with	V
	inductive PNP/NPN	C
	proximity sensor	
CCF	> 65%	1
Channels	2	1
Certificate	IFA (applied for)	1
Safety component	Yes	
to MD 2006/42/EC		

All specified values are maximum values, which can be achieved via correct operation of the component.

Part no.	Туре	Version
574011	VOFA-L26-T32C-M-G14-1C1-APP	Complete 2 x 3/2 control block, individual
		electrical connection, PNP sensor
574012	VOFA-L26-T32C-M-G14-1C1-ANP	Complete 2 x 3/2 control block, individual
		electrical connection, NPN sensor



(applied for)

VSVA-B-M52-MH-A1-1R5L

Exhausting via non-return valves

- VSVA-B-M52-MH-A1-1R5L VSVA-B-M
- VSVA-B-M52-MH-A1-1R5L

]
Cat.	3	All sp
PL	d	maxi
DC	Medium	can b
CCF	> 65%	corre
Channels	2	of th
Safety component	No]
to MD 2006/42/EC		

All specified values are maximum values, which can be achieved via correct operation of the component.

Part no.	Туре	
534556	VSVA-B-M52-MH-A1-1R5L	5/2-way valve
153464	H-QS-8	
530031	HGL-1/4-B	Non-return valve
163371	DNC-50-50-PPV-A	Cylinder
		Pressure switches
		Application-specific
		proximity sensors

See the technical data of the individual products for detailed information. Please observe the legal information on page 73.

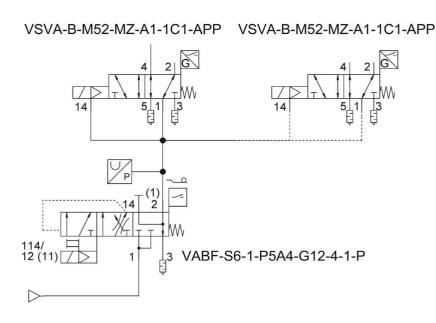
Double-channel

Always check that each channel in multi-channel solutions fulfils the safety function.

Diagnostics

Diagnostics for both channels must be carried out via software.

Special features


The non-return valves also need a differential pressure in order to exhaust. In the event of a fault, a residual pressure of approx. 0.5 bar cannot exhaust.

Safety function

With this set-up, both cylinder chambers are exhausted via 2 channels.

Soft-start and exhaust valve VTSA

		Safety function refers to connection 4 of the VSVA valve!	exhausting
Cat.		3	_
PL		d	System
DC		Switching position	,
		sensing	protection
CCF		> 65%	for a restart
Channels		2	
Safety com	ponent	No	Ţ
Per MD 200	6/42/EC		
Part no.	Туре		
557377	VABF-S6	-1-P5A4-G12-4-1-P	
560726	VSVA-B-	M52-MH-A1-1C1-APP	

All specified values are maximum values, which can be achieved via correct operation of the component.

Double-channel

Always check that each channel in multi-channel solutions fulfils the safety function.

Safety function

In conjunction with safe electrical disconnection and a pressure switch for diagnosing the exhausted status, "Exhausting in PL d Cat 3" can be achieved for connection 4.

The pneumatic diagram shown is only a basic example. The softstart valve function and further valve functions can be configured in the valve terminal VTSA. The pressure switch must be screwed on separately. The calculations of the PL must be adjusted for this. The soft-start valve alone is not a complete safety solution.

Protection against accidental activation of the manual override must be guaranteed in all modes.

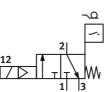
Diagnostics

Diagnostics for both channels must be carried out via software.

On-off valve with piston position sensing

Cat.	Can be used in	/
PL	higher category	1
	systems.	(
DC	Switching position	
	sensing	1
Safety component	No	•
to MD 2006/42/EC		

All specified values are maximum values, which can be achieved via suitable integration of the component into the entire system.


Part no.	Туре
533537	HEE-D-MIDISA207225
548535	HEE-D-MAXISA217173

Technical data

Voltage 24 V DC

Operating pressure 2.5 ... 16 bar

Temperature range -10 ... +60°C

Notes

The on-off valve with piston position sensing is not a complete safety solution. It can be used as part of a solution.

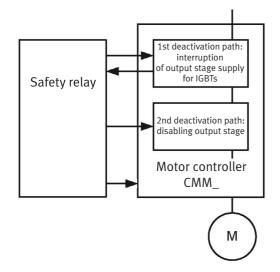
Special features

With solenoid coil, without socket, 3 voltage ranges can be selected, position sensing

Standard sensors with reed contacts can be used for a T-slot: Type SME-8M, SMT-8M, SME-8, SMT-8

Switching output contactless or via reed contacts

Safe stop 1



Notes

With an external safety relay, 2-channel safety requirement and monitoring of a deactivation path.

Power	su	pp	ly_
-------	----	----	-----

	s 0 t	
Cat.	3	A
Medium ()	e	m
DC	Medium	b
CCF	> 65%	in
Safety component	No	co
to MD 2006/42/EC		sy

All specified values are naximum values, which can be achieved via suitable ntegration of the omponent into the entire ystem.

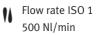
Part no.	Туре
561406	CMMD-AS-C8-3A
550041	CMMP-AS-C2-3A
550042	CMMP-AS-C5-3A
551023	CMMP-AS-C5-11A-P3
551024	CMMP-AS-C10-11A-P3
1366842	CMMP-AS-C20-11A-P3
552741	CMMS-AS-C4-3A
547454	CMMS-ST-C8-7

Valve block, reversing

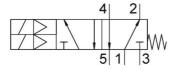
Cat.	3	Al
PL	е] m
DC	Medium	ca
Error diagnostics	Integrated	cc
Channels	2] of
EN 574-1	IIIB	1
Safety component	No]
to MD 2006/42/EC		

2000/		
no.	Туре	
36	150.1	

Part no.	Туре
570336	ISO 1
572244	ISO 2


Ill specified values are naximum values, which an be achieved via orrect operation of the component.

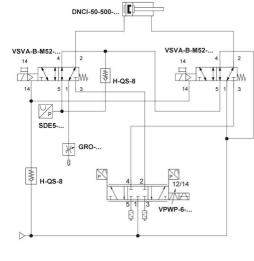
Technical data


Voltage 24 V DV

Operating pressure 3 ... 8 bar

Temperature range 0 ... +40°C

Flow rate for ISO 2 1100 Nl/min


Safety functions The time between the two actuating signals should not exceed 200 ms. This meets

DIN EN 574 IIIB.

Safety function for servopneumatics

Pneumatic reversing

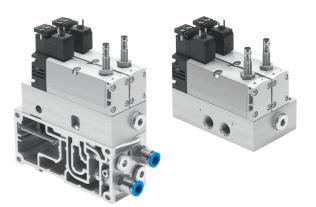
Cat.	3	All specifie
PL	d	maximum
DC	Medium	can be ach
CCF	> 65%	correct op
Channels	2	of the com
Safety component	No	
to MD 2006/42/EC		

l specified values are aximum values, which In be achieved via prrect operation The component.

Part no.	Designation	Description	
550 171	VPWP-6-L-5	Proportional valve, component of the servopneumatic	
		system as a first channel	
534 546	VSVA-B-M52-MZH-A1-1R5L	5/2 single solenoid switching valve, with spring return and	
161 109	NAS-1/4-01-VDMA	auxiliary pilot air as a 2nd channel. The size (flow rate) is	
		based on the proportional valve.	
535 413	DNCI-50-500-P-A	Standard cylinder	
542 897	SDE5-D10-FP-Q6E-P-M8	Pressure switch for diagnostics of the emergency stop	
		valves (VSVA)	
193 973	GR0-QS-6	Flow control valve for regulating the repositioner speed	
11 689	H-QS-8	Non-return valve	

See the technical data of the individual products for detailed information. Please observe the legal information on page 73.

Features


- Protection against unexpected start-up (2-channel)
- Safety measure: reversing (1-channel)
- Safety measure: travel at reduced speed (1-channel)
- Pressure supply not deactivated

Notes

- Can also be used for vertical axes
- If an emergency stop is activated, the drive is pressurised.
- On reactivation, the drive can move, depending on the activation conditions.
- Use of a braking/clamping unit, together with the servopneumatic controller, can prevent a movement on restart.

VOFA – 5/2 Safety valves for presses

Cat.	4	
PL	e	
DC	Switching position	
	sensing with	
	inductive PNP/NPN	
	proximity sensor	
CCF	> 65%	
Channels	2	
Certificate	IFA	
Safety component	Yes	
to MD 2006/42/EC		

All specified values are maximum values, which can be achieved via suitable integration of the component into the entire system.

Diagnostics

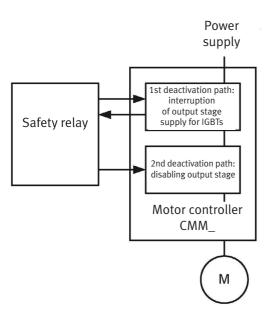
Diagnostics via evaluation of the actuation and feedback signal must be carried out via software

Fault exclusion

Fault exclusion for valves that are jammed or haven't switched.

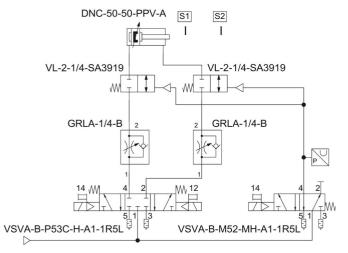
Part no.	Туре	Version
569819	VOFA-L26-T52-M-G14-1C1-APP	Complete 2 x 5/2 control block, individual
		electrical connection, PNP sensor
569820	VOFA-L26-T52-M-G14-1C1-ANP	Complete 2 x 5/2 control block, individual
		electrical connection, NPN sensor
Property	"SP" in order code	Complete 2 x 5/2 control block, integration in
		valve terminal VTSA, PNP sensor
Property	"SN" in order code	Complete 2 x 5/2 control block, integration in
		valve terminal VTSA, NPN sensor

Safe torque off (STO)


Notes

With an external safety relay, 2-channel safety requirement and monitoring of a deactivation path.

Cat.	3	All spec
PL	e	maximu
DC	Medium	can be a
CCF	> 65%	suitable
Safety component	No	of the c
to MD 2006/42/EC		the enti


Il specified values are naximum values, which an be achieved via uitable integration f the component into ne entire system.

Part no.	Туре	
561406	CMMD-AS-C8-3A	
550041	CMMP-AS-C2-3A	
550042	CMMP-AS-C5-3A	
551023	CMMP-AS-C5-11A-P3	
551024	24 CMMP-AS-C10-11A-P3	
1366842	CMMP-AS-C20-11A-P3	
552741	CMMS-AS-C4-3A	
547454	CMMS-ST-C8-7	

Stopping with shut-off valves

Cat.	3	All specified va
PL	d	maximum valu
DC	Medium	can be achieve
CCF	> 65%	correct operati
Channels	2	of the compon
Safety component	No	
to MD 2006/42/EC		

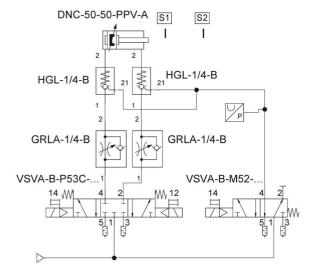
alues are ues, which ed via tion nent.

Always check that each channel in multi-channel solutions fulfils the safety function sufficiently.

The diagnostic evaluation must be performed by the software.

The cylinder is stopped via compressed air. Therefore, the system contains energy stored as compressed air. Additional measures must be taken to be able to exhaust the cylinder chambers if necessary.

If trapped compressed air can result in a danger, further measures are required.


When the safe status is set, there are no additional air inflows or outflows.

After the cylinder stops, it can move depending on the leakage of the individual components. This can result in exhausting the cylinder chambers. Please also note this for the restart.

Part no.	Туре	
534559	VSVA-B-P53C-H-A1-1R5L	5/3-way valve
534556	VSVA-B-M52-MH-A1-1R5L	5/2-way valve
25025	VL-2-1/4-SA	Stop valve
151172	GRLA-1/4-B	Flow control valve
163371	DNC-50-50-PPV-A	Cylinder
		Pressure switches
		Application-specific
		proximity sensors

Stopping with non-return valves

Cat.	3	All speci
PL	d	maximui
DC	Medium	can be a
CCF	> 65%	correct c
Channels	2	of the co
Safety component	No	
to MD 2006/42/EC		

All specified values are maximum values, which can be achieved via correct operation of the component.

Notes

Always check that each channel in multi-channel solutions fulfils the safety function.

The diagnostic evaluation must be performed by the software.

The cylinder is stopped via compressed air. Therefore, the system contains energy stored as compressed air. Additional measures must be taken to be able to exhaust the cylinder chambers.

If trapped compressed air can result in a danger, further measures are required. complied with during braking via dynamic energy (e.g. via resulting pressure peaks).

In the event of a fault of the 5/3-WV, compressed air can flow through the non-return valve HGL until the forces are balanced. That can lead to an increased overtravel time of the cylinder.

After the cylinder stops, it can move depending on the leakage of the individual components. This can result in exhausting the cylinder chambers. Please also note this for the restart.


Part no.	Туре	
534559	VSVA-B-P53C-H-A1-1R5L	5/3-way valve
534556	VSVA-B-M52-MH-A1-1R5L	5/2-way valve
530031	HGL-1/4-B	Non-return valve
151172	GRLA-1/4-B	Flow control valve
163371	DNC-50-50-PPV-A	Cylinder
		Pressure switches
		Application-specific
		proximity sensors

See the technical data of the individual products for detailed information. Please observe the legal information on page 73.

Please note that the technical values of the components are

ISO valve for lifting and rotary cylinders

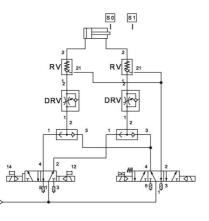
Cat.	2
PL	d
DC	Low
CCF	> 65%
Channels	1
Safety component	No
to MD 2006/42/EC	

Technical data

Voltage 24 V DC

Pressure 3 ... 10 bar

> Temperature range -5 ... +50°C


Flow rate M 1000 l/min All specified values are maximum values, which can be achieved via correct operation of the component.

Description

• For lifting and rotary cylinders in the automotive industry

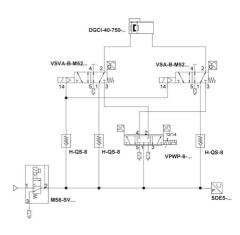
Application

- Self-locking loop and subsequent pressure supply in both end positions
- During the stroke, the cylinder must be kept under pressure in the event of an emergency (e.g. if a safety shut-off mat is stepped on)

Function

		(12)
14 M	4 2	<u> </u> 14
	5 1 2	
14	5 1 3	

Order code	
Part no.	Туре


Part no.	Туре		
560728	VSVA-B-P53AD-ZD-A1-1T1L	Size 01, 5/3 mid-position, 1 port	
		pressurised and 1 port exhausted,	
		switching position 14 detented	14 5 1

Function	Normal operation	In the case of emergency off	Control
		(electrical power is switched off)	
Retract clamping	The 5/2-WV is used to retract the	The clamping device remains under	5/3-WV 12 switched
device	clamping device	pressure in both chambers.	(no automatic locking)
		5/3-WV normal position (14)	5/2-WV 12 connected
		5/2-WV 12 connected	
Advance clamping	The clamping device is advanced via	The clamping device remains under	5/3-WV 12 switched
device	the 5/2 WV	pressure in both chambers.	(no automatic locking)
		5/3-WV 14 normal position	5/2-WV 14 switched
		5/2-WV 14 switched	
Spanner in end	The end positions remain pressurised	The pressure is maintained in the end	5/3-WV is switched to 12
positions		positions	(automatic locking)
		5/3-WV 12 automatic locking	5/2-WV switched to 14 or 12
		5/2-WV 14 or 12 switched	

Safety function for servopneumatics

Pneumatic stopping

Notes

		l
Cat.	3	All specified values
PL	d	maximum values, w
DC	High	can be achieved via
CCF	> 65%	correct operation
Channels	2	of the component.
Safety component	No	
to MD 2006/42/EC		

values are lues, which ved via

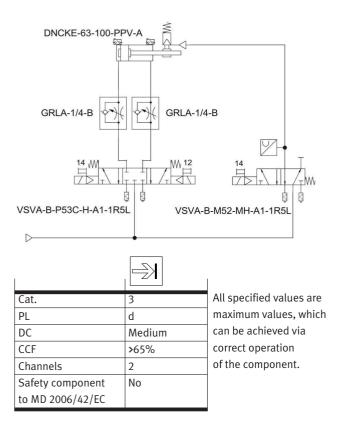
Non-return valves

Features

- Protection against unexpected start-up (2-channel)
- Safety measure: stopping a movement (2-channel)
- Stop category: "1"
- The compressed air supply is switched off (2-channel)

- This set-up can be used for horizontal and vertical axes.
- When the emergency stop is activated, the compressed air remains trapped in the drive; the drive is not free of compressed air.
- It is characteristic of pneumatic systems that the trapped compressed air in the cylinder does not lead directly to a standstill of the axis. The overtravel depends on the current speed and the moving mass.
- On restart, the drive can move, depending on the start conditions. If the valves VSVA are switched on with a delay depending on SDE5, this movement can be minimised.
- Use of a braking/clamping unit, together with the servopneumatic controller, can prevent a movement on restart.

Element Part no. Designation Description V1 550 171 VPWP-6-L-5-... Proportional valve, component of the servopneumatic system as a first channel V2, V3 534 546 VSVA-B-M52-MZH-A1-1R5L 5/2 single solenoid switching valve with spring 161 109 NAS-1/4-01-VDMA return and auxiliary pilot air and switching position sensing as a second channel. The size (flow rate) is based on the proportional valve. V5 548 713 MS6-SV-1/2-E-10V24-SO Soft-start/quick exhaust valve with 2-channel self monitoring and performance level e. Α3 DGCI-40-750-P-A 544 428 Rodless linear drive with displacement encoder S1 542 897 SDE5-D10-FP-Q6E-P-M8 Pressure switch for monitoring the restarting pressure


See the technical data of the individual products for detailed information. Please observe the legal information on page 73.

H-QS-8

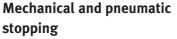
11 689

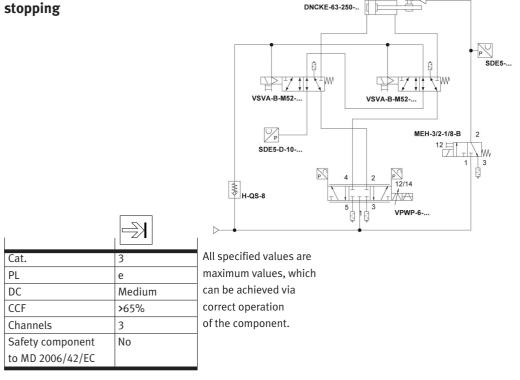
Mechanical and pneumatic stopping

Part no.	Туре
534559	VSVA-B-P53C-H-A1-1R5L
534556	VSVA-B-M52-MH-A1-1R5L
	Pressure switches
151172	GRLA-1/4-B
526483	DNCKE-63-100-PPV-A

See the technical data of the individual products for detailed information. Please observe the legal information on page 73.

Notes


Always check that each channel in multi-channel solutions fulfils the safety function.


The diagnostic evaluation must be performed by the software.

After the cylinder stops, it can vent depending on the leakage of the individual components. Please also note this for the restart.

Safety function for servopneumatics

Part no.	Designation	Description
550 171	VPWP-6-L-5	Proportional valve, component of the servopneumatic
		system as a first channel
534 546	VSVA-B-M52-MZH-A1-1R5L	5/2 single solenoid switching valve, with spring return and
161 109	NAS-1/4-01-VDMA	auxiliary pilot air as a 2nd channel. The size (flow rate) is
		based on the proportional valve.
173 124	MEH-3/2-1/8-B	3/2 single solenoid switching valve with spring return
526 483	DNCKE-63-250-PPV-A	Standard cylinder with clamping unit, displacement encoder
		attached externally
542 897	SDE5-D10-FP-Q6E-P-M8	Pressure switch for monitoring the emergency stop valves
		VSVA and the clamping function
11 689	H-QS-8	Non-return valves

Features

- Protection against unexpected start-up (2-channel)
- Safety measure: stopping (2-channel)
- Safety measure: blocking (1-channel)
- Stop category: "1"
- Pressure supply not deactivated

Notes

- Recommended for vertical axes
- When the emergency stop is activated, the compressed air remains trapped in the drive; the drive is not free of compressed air.
- The braking unit, together with the servopneumatic controller, can prevent a movement on restart.
- If only one clamping unit/cartridge is used, the axis must be at a standstill before it is clamped.
 This standstill can be generated via a STOP signal with the servopneumatic controller.
 The emergency stop valves VSVA are then deactivated with a time delay.

Clamping units

Cat.	Can be used in	All s
PL	higher category	max
DC	systems.	whic
CCF		via o
Channels	1	ofth
Safety component	No]
to MD 2006/42/EC		

All specified values are maximum values, which can be achieved via correct operation of the component.

Notes

The clamping cartridge is not a complete safety solution. It can be used as part of a solution.

The piston rod can be held or clamped in any position.

The piston rod can also be held for extended periods, alternating loads, fluctuations or leakage.

Part no.	Туре	Part no.	Туре
178455	KP-10-350	178460	KP-25-5000
178456	KP-12-600	178461	KP-32-7500
178457	KP-16-1000	178452	KP-4-80
178458	KP-20-1400	178453	KP-6-180
178459	KP-20-2000	178454	KP-8-350

Part no.	DNC-KP	Emergency stop stroke
163302	Ø 32	10 2000
163334	Ø 40	10 2000
163366	Ø 50	10 2000
163398	Ø 63	10 2000
163430	Ø 80	10 2000
163462	Ø 100	10 2000
163494	Ø 125	10 2000

Part no. Туре Part no. Туре 178465 KPE-10 178470 KPE-32 KPE-12 KPE-4 178466 178462 178467 KPE-16 178463 KPE-6 KPE-20 178468 178464 KPE-8 KPE-25 178469

Part no.	ADNKP	Stroke	DNC-KP
548206	Ø 20	10-300	KP-10-350
548207	Ø 25	10-300	KP-10-350
548208	Ø 32	10-400	KP-12-1000
548209	Ø 40	10-400	KP-16-1400
548210	Ø 50	10-400	KP-20-1400
548211	Ø 63	10-400	KP-20-2000
548212	Ø 80	10-500	KP-25-5000
548213	Ø 100	10-500	KP-25-5000

Mini-slide DGSL with clamping unit or end-position locking

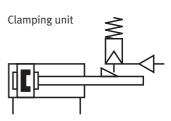
Cat.	Can be used in	,
PL	higher category	i
DC	systems.	1
CCF		,
Channels	1	1
Safety component	No	
to MD 2006/42/EC		

All specified values are maximum values, which can be achieved via correct operation of the component.

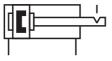
Notes

The clamping unit and the end-position locking are not complete safety solutions. They can be used as part of a solution.

Clamping unit


- For fixing the slide in any position
- Frictional locking
- Clamping via spring force, release via compressed air

end-position locking


- Mechanical locking when the end position is reached
- Positive-locking
- Locking via spring force, release compressed air

Part no.	Туре
543903	DGSL-6
543904	DGSL-8
543905	DGSL-10
543906	DGSL-12
543907	DGSL-16
543908	DGSL-20
543909	DGSL-25

See the technical data of the individual products for detailed information. Please observe the legal information on page 73.

E3 end-position locking

Cylinder with end-position locking

Cat.	Can be used in	All
PL	higher category	are
DC	systems.	wh
CCF		via
Channels	1	of
Safety component	No	
to MD 2006/42/EC		

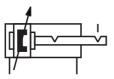
All specified values are maximum values, which can be achieved via correct operation of the component.

Part no.	Туре
163302	DNC-32-EL
163334	DNC-40-EL
163366	DNC-50-EL
163398	DNC-63-EL
163430	DNC-80-EL
163462	DNC-100-EL

Part no.	Туре
548214	ADN-20-EL
548215	ADN-25-EL
548216	ADN-32-EL
548217	ADN-40-EL
548218	ADN-50-EL
548219	ADN-63-EL
548220	ADN-80-EL
548221	ADN-100-EL

See the technical data of the individual products for detailed information. Please observe the legal information on page 73.

Notes


The mechanical lock is not a complete safety solution. It can be used as part of a solution.

Mechanical locking when the end position is reached. The requirement for releasing is back pressure on the other side of the piston.

Positive-locking

Locking is automatically released when pressure is applied to the cylinder

End-position locking at one or both ends

Brake unit DNCKE-S, KEC-S

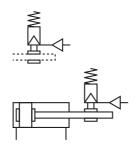
Cat.	Can be used in	All speci
PL	higher category	maximu
DC	systems.	which ca
CCF		via corre
Channels	1	of the co
Safety component	Yes, if IFA certified	
to MD 2006/42/EC		

All specified values are maximum values, which can be achieved via correct operation of the component.

Part no.	Туре	
526482	DNCKE-40PPV-A	
526483	DNCKE-63PPV-A	
526484	DNCKE-100PPV-A	
538239	DNCKE-40PPV-A-S	IFA-certified
538240	DNCKE-63PPV-A-S	IFA-certified
538241	DNCKE-100PPV-A-S	IFA-certified
527492	KEC-16	
527493	KEC-20	
527494	KEC-25	
538242	KEC-16-S	IFA-certified
538243	KEC-20-S	IFA-certified
538244	KEC-25-S	IFA-certified

See the technical data of the individual products for detailed information. Please observe the legal information on page 73.

Notes


The clamping unit and the end-position locking are not complete safety solutions. They can be used as part of a solution.

As a holding device

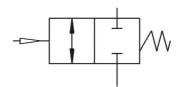
- Holding and clamping in the event of a power failure
- Protection against pressure failure and pressure drop

As a braking device

- Braking or stopping movements
- Interruption of a movement if a danger area is entered

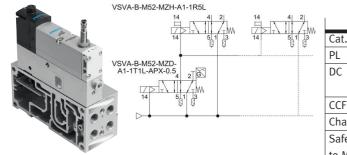
Stop valve VL-2-1/4-SA

Cat.	Can be used in	All specified values
PL	higher category	are maximum values,
DC	systems.	which can be achieved
CCF		via correct operation
Channels	1	of the component.
Safety component	No	
to MD 2006/42/EC		


Part no.	Туре
25025	VL-2-1/4-SA

Notes

The stop valve is not a complete safety solution. It can be used as part of a solution.


Technical data

- Operating pressure 0 ... 10 bar
 - Temperature range -20 ... 80°C

VTSA – pilot air switching valve

Cat.	3
PL	e
DC	Switching
	position sensing
CCF	> 65%
Channels	2
Safety component	No
to MD 2006/42/EC	

All specified values are maximum values, which can be achieved via correct operation of the component.

Part no.	Туре	
573201	VSVA-B-M52-MZD-A2-1T1L-APX-0.5	5/2-way valve, width 18 mm, single solenoid,
		mechanical spring return, with switching position
		sensing via inductive sensor with PNP output and
		0.5 m cable with 4-pin sensor push-in connector
		M12x1
570850	VSVA-B-M52-MZD-A1-1T1L-APX-0.5	5/2-way valve, width 26 mm, single solenoid,
		mechanical spring return, with switching position
		sensing via inductive sensor with PNP output and
		0.5 m cable with 4-pin sensor push-in connector
		M12x1
573200	VABF-S4-2-S	Vertical stacking manifold, width 18 mm, for con-
		necting the pilot air from channel 1 to channel 14
570851 VABF-S4-1-S		Vertical stacking manifold, width 26 mm, for con-
		necting the pilot air from channel 1 to channel 14
8000033	SPBA-P2R-G18-W-M12-0.25X	Mechanical pressure switch with a fixed
		switching point 0.25 bar
		Sensing the pilot air in channel 14
		G1/8 threads, for screwing in VABF-S4-2-S or
		VABF-S4-1-S
		Sensor plug connector M12x1
8000210	SPBA-P2R-G18-2P-M12-0.25X	Electronic pressure switch with a fixed switching
		point 0.25 bar
		Sensing the pilot air in channel 14
		G1/8 threads, for screwing in VABF-S4-2-S or
		VABF-S4-1-S
		Sensor plug connector M12x1

T

Notes

Always check that each channel in multi-channel solutions fulfils the safety function.

The diagnostic evaluation must be performed by the software.

The pneumatic diagram shown is only a basic example. The "connectable pilot air" function and further valve functions can be configured in the valve terminal VTSA. The calculations of the PL must then be adjusted.

The pilot air switching valve alone is not a complete safety solution. It can be used as part of a solution.

Electrically reliable 2-channel deactivation must be guaranteed.

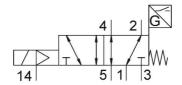
See the technical data of the individual products for detailed information.

| Part no

Type

Valves with switching position sensing

	Cat.		All s
	PL		are r
	DC	Switching position sensing with inductive PNP/NPN proximity sensor	whic via c of th
	CCF		
	Channels	1	
	Safety component	No	
	to MD 2006/42/EC		


All specified values are maximum values, which can be achieved via correct operation of the component.

Description

- Solenoid valves to ISO 15407-1, plug type C, for individual electrical connection
- Solenoid valve to ISO 15407-2, for use with valve terminal VTSA
- Valve function: 5/2-way valve
- ISO size 1, other sizes on request
- Width: 26 mm
- Normal position of the piston spool is monitored by a proximity sensor
- For control architectures in higher categories
- Proximity sensor with M8 connection

Notes

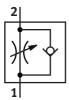
The switching position sensing allows higher diagnostic coverage to be achieved for the valves.

Part no.		Туре
560723	VSVA-B-M52-MZD-A1-1T1L-APC	Size 01, 5/2 single solenoid, return via mech. spring, plug-in valve, with PNP sensor and cable
560724	VSVA-B-M52-MZD-A1-1T1L-APP	Size 01, 5/2 single solenoid, return via mech. spring, plug-in valve, with PNP sensor and plug M8
560725	VSVA-B-M52-MZH-A1-1C1L-APC	Size 01, 5/2 single solenoid, return via mech. spring, Cnomo valve, with PNP sensor and cable
560726	VSVA-B-M52-MZH-A1-1C1L-APP	Size 01, 5/2 single solenoid, return via mech. spring, Cnomo valve, with PNP sensor and plug M8
560742	VSVA-B-M52-MZD-A1-1T1L-APC	Size 01, 5/2 single solenoid, return via mech. spring, plug-in valve, with NPN sensor and cable
560743	VSVA-B-M52-MZD-A1-1T1L-ANP	Size 01, 5/2 single solenoid, return via mech. spring, plug-in valve, with NPN sensor and plug M8
560744	VSVA-B-M52-MZH-A1-1C1L-APC	Size 01, 5/2 single solenoid, return via mech. spring, Cnomo valve, with NPN sensor and cable
560745	VSVA-B-M52-MZH-A1-1C1L-ANP	Size 01, 5/2 single solenoid, return via mech. spring, Cnomo valve, with NPN sensor and cable

Tamper-proof flow control valve GRLA-...-SA

L		
Cat.	Can be used in	Α
PL	higher category	a
DC	systems.	V
CCF		V
Channels	1	C
Safety component	No	
to MD 2006/42/EC		

All specified values are maximum values, which can be achieved via correct operation of the component.


Part no.	Туре
539717	GRLA-M5-B-SA
539661	GRLA-1/8-B-SA
539662	GRLA-1/4-B-SA
539715	GRLA-3/8-B-SA
539716	GRLA-1/2-B-SA
539714	GRLA-3/4-B-SA

See the technical data of the individual products for detailed information. Please observe the legal information on page 73.

Notes

The flow control valve is not a complete safety solution. It can be used as part of a solution.

- Selection of a specified flow rate
- A spring pin protects against the unauthorised resetting of the volumetric flow rate.

Shut-off valve (European version)

Cat.	Can be used in	
PL	higher category	
DC	systems.	
CCF		
Channels	1	
Safety component	No	1
to MD 2006/42/EC		

All specified values are maximum values, which can be achieved via correct operation of the component.

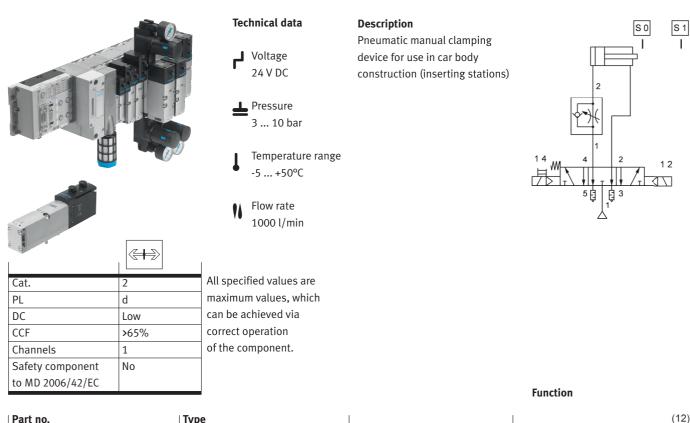
Part no.	Туре
187026	HE-3/8-D-MIDI-NOT-SA
187027	HE-1/2-D-MIDI-NOT-SA
187028	HE-3/4-D-MIDI-NOT-SA
186688	HE-3/4-D-MAXI-SA
186689	HE-1-D-MAXI-SA

Part no.	Туре
197136	HE-G1-LO
197135	HE-G3/4-LO
197134	HE-G1/2-LO
197133	HE-G3/8-LO
197132	HE-N1-LO-NPT
197131	HE-N3/4-LO-NPT
197130	HE-N1/2-LO-NPT
197129	HE-N3/8-LO-NPT

See the technical data of the individual products for detailed information. Please observe the legal information on page 73.

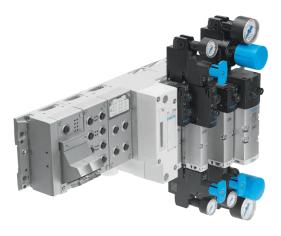
Notes

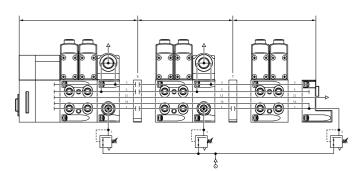
The shut-off valve is not a complete safety solution. It can be used as part of a solution.


- Switching off and venting pneumatic systems
- Can be shut off up to 6 times
- Free of PWIS

The shut-off valve may not be used as an emergency stop valve

ISO valve for pneumatic manual clamping devices




Part no.	Туре		
560727	VSVA-B-P53ED-ZD-A1-1T1L	Size 01, 5/3 mid-position	14
		exhausted, switching	
		position 14 detenting	14

Function	Normal operation	In the case of emergency off	Control
		(electrical power is switched off)	
Clamping device	The 5/2-WV is used to retract	Unpressurised	Valve is in the mid-position
is closed manually	the clamping device		
Clamping device is in	The clamping device is advanced	Supporting force via air pressure	Coil 12 is switched
the end position	via the 5/2 WV	(self-locking); valve remains in	
(metal sheet		position 12	
is clamped)			
Clamping device	Pneumatically operated	Valve returns to the mid-position	Coil 14 is switched
opens automatically			

Pressure zones for valve terminal type 44 VTSA

The illustration shows an example of how three pressure zones are built up and connected with duct separation, with internal pilot air.

See the technical data of the individual products for detailed information. Please observe the legal information on page 73.

Creating pressure zones and separating exhaust air

- With the VTSA, pressure zones with different working pressures can be easily created
- A pressure zone can be created by separating the internal supply ducts between the series manifolds using appropriate duct separation
- Compressed air supply and exhaust via the supply plate
- Free positioning of the supply plates and separating seals in the VTSA
- Channel separations

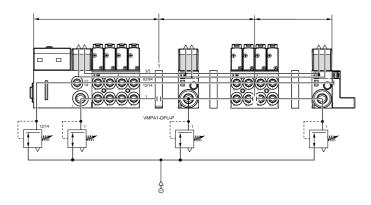
 integrated ex works as per the order, differences can be
 indicated via the coding
 system for assembled valve
 terminals

VTSA with CPX terminal connection

 Up to 16 pressure zones possible with VTSA (if only size 1, ISO 5599-2, is used, up to 32 pressure zones are possible)

Further examples of pressure supply and pilot air via an end plate

- Internal pilot air, ducted exhaust air/silencer
- External pilot air,
- silencer/ducted exhaust air


Reliable exhausting of valves or pressure zones

If used together with the MS6-SV valve, certain areas can be exhausted safely whilst the pressure is retained for specific valves or pressure zones. This is a common requirement for protective circuits.

Pressure zones for valve terminal type 32 MPA

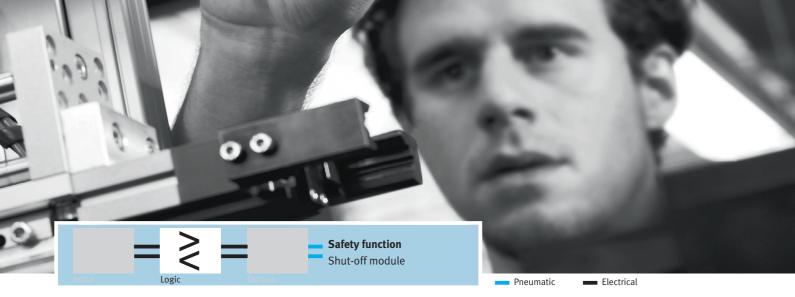
The illustration shows an example of how three pressure zones are built up and connected with separating seals, with external pilot air supply.

Creating pressure zones and separating exhaust air

- With the MPA, pressure zones with different working pressures can be easily created.
- A pressure zone can be created by separating the internal supply ducts between the sub-bases, with a corresponding separating seal or via a separator integrated into the sub-base (code I)
- Compressed air supply and exhaust via the supply plate.
- Free positioning of the supply plates and separating seals in MPA with CPX and MPM (multiple connector plate)
- Separating seals integrated ex works as per the order, differences can be indicated via the coding system for assembling valve terminals

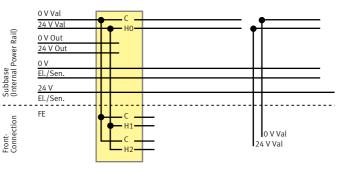
MPA with CPX terminal connection Example of pressure zones

• Up to 8 pressure zones possible with MPA and CPX


Further examples of compressed air supply and pilot air supply

- External pilot air supply, flat plate silencer
- Internal pilot air supply, ducted exhaust air
- External pilot air supply, ducted exhaust air

Reliable exhausting of valves or pressure zones


If used together with the MS6-SV valve, specific areas can be exhausted safely whilst the pressure is retained for specific valves or pressure zones. This is a common requirement for protective circuits.

Please observe the legal information on page 73.

CPX Profisafe

Cat.	3	All s
PL	e	maxi
DC	99 %	can l
CCF	> 65%	corre
Channels	2	of th
Certified	TÜV	
Safety component	Yes	
to MD 2006/42/EC		

l specified values are aximum values, which in be achieved via prrect operation the component.

Part no.	Туре
Select according to order code	CPX-FVDA-P

Notes

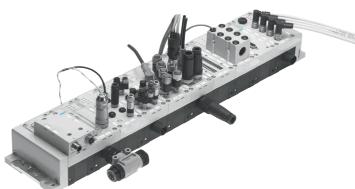
The CPX Profisafe module is a safety component.

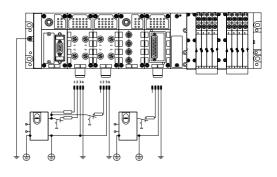
All channels are self-monitoring for the safety function and for protection against short circuits.

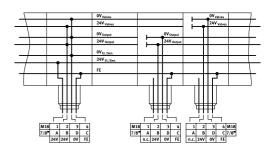
Galvanic isolation of the voltage concepts.

CPX-FVDA-P can work with every Profisafe-capable controller.

Two channel, self-monitoring, electrical switch off.


M12- or Cage Clamp connection block.


The ProfiSafe module is always ordered in a fixed configuration; see part printed in bold in the example:


51E-F33GCQPEKANFKAQF-Z

CPX terminal – power supply concept

Description

The use of decentralised devices on the fieldbus – particularly with high protection for direct machine mounting – demands a flexible power supply concept.

A valve terminal with CPX can generally be supplied via a socket for all voltages. Here, we distinguish between supplying the

- Electronics plus sensors
- Valves plus actuators.

The following connection types can be selected

- 7/8", 4 or 3-pin
- M18, 4-pin
- Push-Pull

Interlinking blocks, together with all the power supply rails, are the backbone of the CPX terminal. They provide the power supply for the CPX modules and their fieldbus connection.

Many applications require the CPX terminal to be separated into voltage zones. This is particularly true for switching off the solenoid coils and the ports separately. The interlinking blocks can either be designed as an installationsaving centralised power supply for the entire CPX terminal, or they can be designed as galvanically isolated, all-pin disconnectable potential groups/voltage segments.

The voltage concept of the CPX terminal permits safe deactivation via external safety devices, safety control outputs or via the integrated ProfiSafe deactivation module.

Knowledge provides greater safety

Safety is always more than simply the hardware and the appropriate circuit diagrams. Safety starts at the concept stage, for example by identifying necessary performance levels. For comprehensive training on the subject of safety, Festo Didactic provides numerous courses on various topics.

Over 40 years of experience in training and consulting, courses in 40 languages, over 40,000 participants each year, and approx. 230 ongoing national and international projects with 200 experienced trainers and consultants speak for themselves. Our trainers place their wealth of expertise at your disposal and prepare you or your employees for the specific safety responsibilities in the best possible manner.

Our web-based training course Safety Engineering is ideal for independent and flexible learning.

In addition to the various seminars on safety technology, we also provide on-site support to our customers. For example, SMS Meer GmbH in Mönchengladbach with the seminar series on the new **EC Machinery Directive** 2006/42/EC and the new standard EN ISO 13 849-1: "Although the specifications have been implemented by the EC machinery directory for some time, questions still arise in day-to-day work. They must be answered and all employees must be at the same level and have the same understanding that was the objective of the seminars. For example, the discussion of the details took quite a lot of time, which resulted in very high satisfaction ratings in the seminar evaluation.

Many participants wanted follow-up events, particularly on DIN EN ISO 13849. The varied global relevance of safety engineering issues now requires a broad range of expertise. It is almost impossible for design or sales departments to keep up-to-date. SMS Meer now has a new central department for strategic and operational support for product areas and can provide design and sales departments with exactly the training they need. The significant global changes necessitate regular broad training courses, and keeping the overall qualifications of the employees up to date." Andreas Dröttboom, Documentation and Product Safety Manager, SMS Meer GmbH Mönchengladbach

Or Stanzwerk Salzwedel about the project "Supervisory support in obtaining the CE mark per MD 2006/42/EC":

Stanzwerk Salzwedel produces assembly systems for building operating equipment, and requires CE marks for these machines. This is subject to the EC Machinery Directive 2006/42/EC. Festo Training and Consulting supported the company during the conformity process for an assembly system for motors, from drawing up a risk assessment to issuing the declaration of conformity.

The team listed specific hazards on the machine and the resulting risks were documented in the risk assessment. Then, specific technical solutions – both in terms of design and functionality – were found and documented. The components used were checked and documented. In the operating instructions, the team also described and explained possible residual risks.

The implemented technical control solutions were reviewed in accordance with the new standard 13849-1 and their safety engineering functions were demonstrated mathematically.

Overview of training courses

Focus course "Calculating with EN ISO 13 849-1 (FOKUS-3)"

While EN 954-1 only described safety switches quantitatively, the new standard adds a qualitative aspect. It takes the safety in all phases of a machine's service life as well as safety-relevant software into consideration. There are different classifications for the control category, which permits lowercost solutions. The new standard raises many questions. How can we calculate with EN ISO 13 849-1 and how is it used to confirm the required Performance Level? Which components are taken into consideration and how are they assigned to the individual channels?

Content:

- Risk assessment as per EN ISO 13 849-1
- Differences from EN 954-1
- Terms in EN ISO 13 849:

Performance Level PL, probability of failure per hour PFH, diagnostic coverage DC, common cause failures CCF, mean time to failure MTTF

- Determining the individual values based on selected pneumatic and electropneumatic circuits
- Checking prescribed safety switches
- Insight into the software
 SISTEMA
- Practical exercises

Target group: design engineers and design managers from mechanics, electrical engineering and control technology, as well as project managers

Duration: 1 day

Focus course "EC Machinery Directive and the German industrial safety regulations (Betriebssicherheitsverordnung) – CE, modification, expansion and liability (FOKUS-4)"

The EC Machinery Directive describes the requirements a machine manufacturer must fulfil when building a machine. In particular, the aspects of liability and documentation must be clarified.

CE certification for interlinked or incomplete machines which are integrated in other machines is particularly important. In this case, the safety at transition points must be clarified, while the control and emergency stop concepts are also important. After being sold, machines are generally modified, sold on or "refitted" and often operated for many years. What safety standard is provided for these phases? What is the liability situation if a machine is returned to a manufacturer for reworking? Content:

- Responsibilities of the documentation officer
- Liability for managing directors, design engineers and signees of the declaration of conformity
- CE marking and interlinked machines
- What does the term "incomplete machine" mean?
- Operational safety regulation
- Old machines and protecting existing machinery
- Checking machine safety over time
- Expansion and modification of a machine - is recertification required?
- What is a major modification?

Target group: design engineers and design managers from mechanics, electrical engineering and control technology, as well as project managers

Duration: 1 day

For dates and other information, see **www.festo-tac.de**

Seminar "Safety in pneumatics and electro-pneumatics for design engineers (SAFETY2)"

After this seminar, participants will understand the connection between pneumatic and electric components, be able to evaluate the behaviour of pneumatic drives and design safety circuits up to control category 4. They will work in accordance with DIN EN ISO 13849-1 and other standards required to fulfil the EC Machinery Directive.

Content:

- Structure and function of safety-related circuits to DIN EN ISO 13849-1
- Identification of the safety categories of circuits
- Selecting spare parts
- Power failure and restoreReliable pressurising and
- exhausting
- Safe opening of brakes and clamps
- Fundamental and proven safety principles of pneumatics per DIN EN ISO 13849-2

- Selected safety measures of safety-oriented pneumatics (unexpected restart; blocking, braking and reversing of movements; switching off power and free mobility; reduced force and speed; two-hand operation)
- Error analysis and exclusion per DIN EN ISO 13849-2
- Effect of tube length, diameter and fittings on the speed of cylinders
- Information on operating instructions and maintenance

Target group: mechanical, electrical and control technology engineers

Duration: 2 days

This course will enable participants to specify the components in a protection circuit and calculate the performance level of this circuit using the SISTEMA software. They will be able to understand the qualitative aspect of DIN EN ISO 13849-1.

• Risk assessment to DIN EN ISO 13849-1

Seminar

- Terms in EN ISO 13849-1: Performance Level (PL), probability of failure per hour (PFH), mean time to failure (MTTF), service life characteristics of components (B10), diagnostic coverage (DC), common cause failures (CCF)
- Safety functions and control categories
- Determining the components in the safety chain

• Structure of the software SISTEMA

"Calculating safety circuits to DIN EN ISO 13849-1

using the software SISTEMA (SAFETY3)"

- Calculations based on many examples
- Calculation with complex structures (multiple guards, multiple drives)
- Calculations with safety components and error exclusion
- Creation of own libraries
- Integration of own documentation
- Many practical computer exercises using the software SISTEMA

Target group: mechanical, electrical and control technology engineers

Duration: 2 days

For dates and other information, see **www.festo-tac.de**

Seminar "Safe switching technology for maintenance technicians (P141)"

Participants will be able to troubleshoot, repair and recommission systems, taking into consideration the applicable safety regulations and safety measures. To this end they learn about the respective control categories and their stipulations. They observe the potential hazards in pneumatic circuits and choose the right spare parts. In this way they acquire the knowledge they need to observe the applicable safety specifications in their working environment.

Content:

- Introduction to safety engineering and EN ISO 13849-1
- Fundamental and proven safety principles for pneumatics
- Control and stop categories and their effects
- Safe handling of potential dangers in pneumatic circuits

- Selected safety measures of safety-oriented pneumatics (unexpected restart; blocking, braking and reversing of movements; switching off power and free mobility/ reduced force and speed; two-hand operation)
- Explaining and eliminating errors in safety-related circuits
- Selecting the right spare parts by taking the failure characteristics into account
- Safe pressurisation and exhausting of drives and systems
- Influences of the overtravel time of pneumatic drives on the working range of safe light barriers
- Safe handling of brakes and clamps
- Practical exercises

Target group: maintenance employees and mechanics and electricians

Duration: 4 days

Seminar "Safety-relevant circuits in pneumatics and electro-pneumatics for vocational training (SAFETY-AL)"

After this seminar, participants can teach their trainees the core and specialised skills required in the training curriculum with a focus on safety engineering, preparing them ideally for the vocational qualification examinations. They will be familiar with the standards and regulations which must be observed and can apply them in their training and when supervising trainees as part of their company responsibilities.

Content:

- Directives and standards on safety in machine construction
- Structure of safety-related circuits to EN ISO 13849-1
- Terms in EN ISO 13849-1
- Fundamental and proven safety principles of pneumatics per DIN EN ISO 13849-2
- Selected safety measures of safety-oriented pneumatics (unexpected restart/blocking, braking and reversing of movements; switching off power and free mobility/ reduced force and speed; two-hand operation)

- Methodical and learningoriented implementation tools for trainers in the business process
- Information on producing documentation and test reports required in accordance with the training plan, which are a part of the final examination
- Practical exercises, structure, tests and troubleshooting

Target group: all trainers and company supervisors in the metal and electronics industries or in mechatronic engineering

Duration: 4 days

For dates and other information, see **www.festo-tac.de**

Machine safety services by Festo in Austria

Festo Austria offers services for machine safety engineering, such as employee qualification, planning support, technical support, etc.

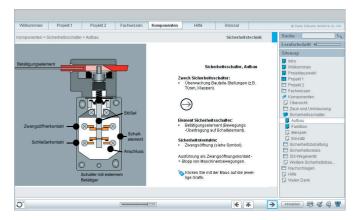
Machine safety training at the customer's premises

Festo Didactic has organised comprehensive training courses at Fill as a general contractor. Other specialists and trainers came from Siemens, Pilz, SEW Eurodrive, Sick, TÜV Austria Services and IBF Automatisierungs- und Sicherheitstechnik. The training courses took place on site at Fill's technology park in the north of Austria. That was a major advantage for the customer, as the employees did not have to travel long distances to and from a training location.

From standards to circuits

Selected targets of Fill's training concept included the ability to understand and apply specific standards, planning safe electrical, hydraulic and pneumatic circuits, using software for optimal design, programming safety-related control units and creating and dimensioning bus concepts – of course all in the light of the new EC Machinery Directive.

Rudolf Reiter, Head of Safety Engineering at Fill: "Continuity of evaluating safety functions regardless of the technology and energy used (electric, hydraulic, pneumatic, mechanical, etc.) was important for us and that was completely achieved with Festo's fluid technical background." "Thanks to the specific training concept customised for Fill, spread out over several weeks, our employees are now perfectly equipped for new safety engineering requirements."


Contact at Festo Austria:

Ing. Thomas Müller fit4safe@festo.at

Festo Gesellschaft m.b.H. Linzer Straße 227 1140 Vienna Tel.: +43(0)1/91075-300 Fax: +43(0)1/91075-302 www. festo.at www.festo.didactic.at

WBT – Web-based training for safety engineering

This training program provides an introduction to the complex subject of safety engineering in industrial machines and systems.

The aim is to make participants more aware of the problems in the design aspects of safety engineering and help them understand safety engineering equipment and hazard analysis methods.

The training program is based on an amended version of the EC Machinery Directive 2006/42/EC, which came into force on 29 December 2009. Until then, 98/37/EC was valid. There is no transitional period.

How is the overall performance level of a technical safety measure determined? The training program explains concepts such as probability of failure (POF), diagnostic coverage (DC), common cause failure (CCF), redundancy and diversity. There is also a detailed explanation of all the components for safety equipment.

From the contents

- Introduction to machine safety
- The question of liability (who is liable in the case of an accident?)
- European directives
- The relationship between directives and standards
- The new EU Machinery Directive 2006/42/EC
- The hierarchy of the European standards for machine safety
- Machine safety in the USA
- Risk assessment procedure according to EN ISO 14121 and EN ISO 12100

- Definitions
- Risk estimation: determining the Performance Level required
- Risk reducing measures: design measures, technical safety measures, instructive measures
- Selecting the safety function
- Determining the control category

We can meet your needs

Available as a CD-ROM version or alternatively a WBT version for installation on networks and learning management systems, with as many licences as you need.

Duration

About 4 hours

For more information, see the Festo Didactic homepage: www.festo-didactic.com

Legal notice

This guideline is intended only for information for everyone who uses or wants to use safety engineering. All information contained in this guideline was drafted and compiled according to our best knowledge and conscience as a support on the topic of safety engineering. This applies in particular to the guidelines and norms mentioned and makes no claim of completeness.

The solutions, illustrated assemblies, product compositions and arrangements shown in this guide in the form of technical and/or schematic sketches are only application examples for our products/ assemblies. They are nonbinding solution and application suggestions for the customer's concrete application. The respective customer/user must check and observe the laws, guidelines and standards relevant for the construction, manufacture and product information, independently and on his own responsibility for the respective application, and must observe and comply with them

during conversion. They are therefore addressed to sufficiently trained and qualified personnel.

In this context, we assume no responsibility or liability for the solution conceived, drafted and implemented by the customer for the respective, concrete application.

List of abbreviations

Abbreviation	German name	English name	Source
a, b, c, d, e	Bezeichnung für die Performance Level	Denotation of performance levels	DIN EN ISO 13849-1
AB	Anzeige-Bediengeräte	Display and operating units	Festo
AC/DC	Wechsel-/Gleichstrom	Alternating current/direct current	IEC 61511
AE	Anfahr- und Entlüftungsventile	Start-up and exhaust valves	Festo
ALARP	So niedrig wie vernünftigerweise möglich	As low as reasonable practicable	IEC 61511
ANSI	US-amerikanische Normungsorganisation	American National Standards Institute	IEC 61511
AOPD/AOPDDR	Aktive optoelektronische Schutzein-	Active optoelectronic protection device	ISO 12100,
- , -	richtung		DIN EN ISO 13849-1
AS-Interface	Aktuator Sensor Interface	Aktuator Sensor Interface	
B, 1, 2, 3, 4	Bezeichnung für die Kategorien	Denotation of categories	DIN EN ISO 13849-1
B10	Anzahl von Zyklen, bis 10 % der Kompo-	Number of cycles until 10% of the	DIN EN ISO 13849-1
210	nenten ausgefallen sind (u.a. für pneumati-	components fail (for pneumatic	
	sche und elektromechanische Komponenten)		
B10 _d	Anzahl von Zyklen, bis 10 % der Kompo-	Number of cycles until 10% of the com-	DIN EN ISO 13849-1
0100	nenten gefährlich ausgefallen sind	ponents fail dangerously (for pneumatic	
	(u.a. für pneumatische und elektrome-	and electomechanical components)	
	chanische Komponenten)		
DDCC		Desis average southed system	IEC 61511
BPCS	Betriebs- und Überwachungseinrichtungen	Basic process control system	
BPCS	Betriebs- und Überwachungseinrichtungen	Basic process control system	IEC 61511
	als ein System		
BSL	Bootstraploader	Bootstrap loader	
BTB/RTO	Betriebsbereit	Ready-to-operate	
BWP	Berührungslos wirkende Positionsschalter	Electro-sensitive position switch	
BWS	Berührungslos wirkende Schutzeinrichtung	· · · ·	EN 61496
Cat.	Kategorie	Category	DIN EN ISO 13849-1
CC	Stromrichter	Current converter	DIN EN ISO 13849-1
ccd	Kommando-Code, Teil einer SDO-Nachricht	Command-code	
CCF	Ausfall in Folge gemeinsamer Ursache	Common cause failure	IEC 61508, IEC 62061, prEN ISO 12849-1EN 61511-1:2004, DIN EN ISO 13849-1
CEN	Europäisches Komitee für Normung	European Commttee for Standardization	
CENELEC	Europäisches Komitee für elektro-	European Commttee for Electrotechnical	
	technische Normung	Standardization	
CMF	Ausfall in Folge gemeinsamer Ausfallart	Common mode failure	EN 61511-1:2004
CRC	Prüfsumme in einem Daten-Telegramm,	Cyclic redundancy check	
	Signatur durch zyklische Redundanzprüfung		
DC	Diagnosedeckungsgrad	Diagnostic coverage	DIN EN ISO 13849-1,
DC			IEC 62061(IEC 61508-2:2000
DC	Gleichstrom	Direct current	
DCavg[%]	Diagnosedeckungsgrad (von Tests)	Average diagnostic coverage	DIN EN ISO 13849-1
DPV0			
DPV0 DPV1	Funktionsversionen von PROFIBUS		
DPVI	Druckventile	Pressure control valves	Festo
DS	Druckschalter	Pressure switch	Festo
DS	Druckverstärker		
E		Pressure amplifier External risk reduction facilities	Festo
	Externe Einrichtung zur Risikominderung		EN 61511-1:2004
E/A	Eingabe/Ausgabe	Input/output	
E/E/EP	Elektrisch/elektronisch/programmierbar	Electrical/electronic/programmable	IEC 61511, IEC 61508
F / F / F -	elektronisch	electronic	
E/E/PE	Elektrisch/elektronisch/programmierbar	Electrical/electronic/programmable	IEC 61511, IEC 61508
	elektronisch	electronic	
E/E/PES	Elektrisches/elektronisches/programmier-	Electrical/electronic/programmable	IEC 61511
	bares elektronisches System	electronic system	
EDM	Schützkontrolle, Rückführkreis	External device monitoring	
EDS	Elektronisches Datenblatt	Electronic data sheet	

Abbreviation	German name	English name	Source
F, F1, F2	Häufigkeit und/oder Dauer der Gefähr-	Frequency and/or time of exposure to	DIN EN ISO 13849-1
	dungsexposition	the hazard	
FB	Funktionsblock	Function block	DIN EN ISO 13849-1
FMEA	Ausfallarten und Effekt-Analyse	Failure modes and effects analysis	DIN EN ISO 13849-1, EN ISO 12100
FO	Funktionsorientierte Antriebe	Function-oriented drives	Festo
FR	Filterregler	Filter-regulator unit	Festo
FTA	Fehlerbaumanalyse/Fehlerzustandsbaum- analyse	Fault tree analysis	EN ISO 12100
Gefährdung	Potenzielle Quellen von Verletzungen oder Gesundheitsschäden	Potential source of injury or damage to health	Maschinenrichtlinie 2006/42/EG
Gefährdungs-	Jeder Bereich in einer Maschine und/oder	Any zone within and/or around	EN ISO 12100
bereich	um eine Maschine herum, in dem eine Per-	machinery in which a person is subject	
	son einer Gefährdung ausgesetzt sein kann		
H & RA	Gefährdungs- und Risikobeurteilung	Hazard and risk assessment	IEC 61511
H/W	Hardware	Hardware	IEC 61511
HFT	Hardware-Fehlertoleranz	Hardware fault tolerance	IEC 61511
НМІ	Mensch-Maschine-Schnittstelle	Human machine interface	IEC 61511
HRA	Analyse menschlicher Zuverlässigkeit	Human reliability analysis	IEC 61511
, 1, 2	Eingabegerät, z.B. Sensor	Input device, e.g. sensor	DIN EN ISO 13849-1
i, j	Index für Zählung	Index for counting	DIN EN ISO 13849-1
1/0	Eingänge/Ausgänge	Inputs/outputs	DIN EN ISO 13849-1
iab, ibc	Verbindungsmittel	Interconnecting means	DIN EN ISO 13849-1
Inhärente	Schutzmaßnahme, die entweder Gefähr-	Inherently safe design measure	EN ISO 12100
sichere	dungen beseitigt oder die mit den Gefähr-	Safety measure, which either eliminates	
Konstruktion	dungen verbundenen Risiken vermindert,	hazards or minimises the risks associated	
	indem ohne Anwendung von trennenden	with the hazards, by changing the design	
	oder nicht trennenden Schutzeinrichtungen	operating properties of the machine	
	die Konstruktions-Betriebseigenschaften	without using disconnecting/	
	der Maschine verändert werden	non-disconnecting protective devices	
KL	Kolbenstangenloser Zylinder	Rodless cylinders	Festo
Konformitäts-	Verfahren, bei dem der Hersteller oder sein	Declaration of conformity	Maschinenrichtlinie
erklärung	in der Gemeinschaft niedergelassener	Process in which the manufacturer or	2006/42/EG
criticituris	Bevollmächtigter erklärt, dass die in den	their authorised representative established	2000/42/20
	Verkehr gebrachten Maschine allen ein-	in the community declares that the machine	
	schlägigen grundlegenden Sicherheits- und		
	Gesundheitsanforderungen entspricht	mental safety and health requirements	
KS	Kolbenstangenzylinder	Cylinders with position rod	Festo
L, L1, L2	Logik	Logic	DIN EN ISO 13849-1
	Ausfallrate bei ungefährlichen und Gefahr	Rate to failure	IEC 62061
Lambda	bringenden Fehlern		120 02001
MTBF	Mittlere Ausfallzeit eines Gerätes	Mean time between failure	DIN EN ISO 13849-1
MTTF/MTTF _d	Mittlere Zeit bis zu einem Ausfall	Mean time to failure/	DIN EN ISO 13849-1
MIII/MIIId	bzw. gefährlichen Ausfall	Mean time to dangeous failure	DIN EN 150 15849-1
MTTR	Mittlere Reparaturzeit eines Gerätes	0	DIN EN ISO 12840 1
NMT	Service-Dienste des CAN-Application Layers	Mean time to repair Network management	DIN EN ISO 13849-1
	Anzahl von SRP/CS mit PLniedrig in einer	Number of SRP/CS with PLlow in a	DIN EN ISO 13849-1
N _{niedrig}	Kombination von SRP/CS	combination of SRP/CS	LIN LIN 130 13047-1
NOT-AUS	Ausschalten im Notfall	Emergency switching off	EN 418 (ISO 13850) EN 60204-1
			Anhang D
NOT-HALT	Stillsetzen im Notfall	Emergency stop	ISO 13850 EN 60204-1 Anhang D
NP	Nicht programmierbares System	Non-programmable system	EN 61511-1:2004

Abbreviation	German name	English name	Source
0, 01, 02, OTE	Ausgabegerät, z.B. Antriebselement	Output device, e.g. actuator	DIN EN ISO 13849-1
OE	Öler	Lubricator	Festo
OSHA			
OSI	Referenzmodell zur Datenkommunikation,	Open System Interconnection	
	Darstellung als Schichtenmodell mit ver-		
	teilten Aufgaben für jede Schicht		
OSSD	Ausgangsschaltelement,	Output signal switching device	EN 61496-1
	Sicherheits-Schaltausgang		
P, P1, P2	Möglichkeit zur Vermeidung der Gefährdung	·	DIN EN ISO 13849-1
Pdf	Wahrscheinlichkeit gefahrbringender Ausfälle	Probability of dangerous failure	IEC 61508, IEC 62061
PE	Programmierbare Elektronik	Programmable electronics	EN 61511-1
PES	Programmierbares elektronisches System	Programmale electronic system	EN 61511-1, DIN EN
PFD	Ausfallwahrscheinlichkeit bei Auslösen/	Probability of failure on demad	IEC 61508, IEC 62061
	Anfrage der Sicherheitsfunktion		
PFH	Ausfallwahrscheinlichkeit pro Stunde	Probability of failure per hour	IEC 62061
PFH _d	Wahrscheinlichkeit gefahrbringender	Probability of dangerous failure per hour	IEC 62061
	Ausfälle pro Stunde		
PHA	Vorläufige Untersuchung von Gefährdungen		EN ISO 12100
PL/Perfor-	Diskreter Level, der die Fähigkeit von	Discrete level used to specify the ability	DIN EN ISO 13849-1
mance Level	sicherheitsbezogenen Teilen einer Steue-	of safety-related parts of control systems	
	rung spezifiert, eine Sicherheitsfunktion	to perform a safety function under fore-	
	unter vorhersehbaren Bedingungen auszu-	seeable condtions	
DI	führen Angewandter Performance Level(PL),	Performance level (PL) applied in order	DIN EN ISO 13849-1
PL _r	um die erforderliche Risikominderung für	to achieve the required risk reduction	DIN EN ISU 13049-1
	jede Sicherheitsfunktion zu erreichen	for each safety function	
PLC	Speicherprogrammierbare Steuerung (SPS)		IEC 61511, DIN EN ISO 13849-1
PLniedrig	Niedrigster Performance Level einer SRP/CS		DIN EN ISO 13849-1
· -meang	in einer Kombination von SRP/CS	in a combination of SPR/CS	
PR	Proportionalventile	Proportional valves	Festo
RE	Regler	Regulator	Festo
Restrisiko	Risiko, das nach Ausführung der Schutz-	Risk remaining after safety measures	EN ISO 12100
	maßnahme verbleibt	have been taken	
Risiko	Kombination der Wahrscheinlichkeit	Combination of the probability	EN ISO 12100
Risikoanalyse	Kombination aus Festlegung der Grenzen	Combination of the specification of the	EN ISO 12100
	einer Maschine, Identifizierung einer	limits of the machine, hazard identifi-	
	Gefährdung und Risikoeinschätzung	cation and risk estimation	
Risiko-	Gesamtheit des Verfahrens, das eine	Overall process comprising a risk	EN ISO 12100
beurteilung	Risikoanalyse und Risikobewertung	analysis and a risk evaluation	
	umfasst		
Risiko-	Auf der Risikoanalyse beruhende Beur-	Judgement, on the basis of risk analysis,	EN ISO 12100
bewertung	teilung, ob die Ziele zur Risikominderung	of whether the risk reduction objectives	
	erreicht wurden	have been achieved	
Risiko-	Bestimmung des wahrscheinlichen Aus-	Defining the likely severity of harm and	EN ISO 12100
einschätzung	maßes eines Schadens und der Wahr-	probability of its occurrence	
	scheinlichkeit seines Eintritts		
S, S1, S2	Schwere der Verletzung	Severity of injury	DIN EN ISO 13849-1
SA	Schwenkantriebe	Semi-rotary drives	Festo
	Vor-Ort-Abnahme	Site acceptance test	IEC 61511
SAT		Dhysical injug or damage to health	EN 61511-1
SAT Schaden	Physische Verletzung und/oder Schädigung	Physical injuy of uanage to nealth	
SAT Schaden	von Gesundheit oder Sachen		
SAT		Means that eliminates a hazard or reduces a risk	EN ISO 12100, EN 61511-1

Abbreviation	German name	English name	Source
SIL	Sicherheits-Integritätslevel	Safety integrity level	IEC 61511, DIN EN ISO 13849-1
SIS	Sicherheitstechnisches System	Safety instrumented system	EN 61511-1
SP	Sperrventile	Shut-off valves	Festo
SPE	Sensitive Schutzeinrichtung mechanisch	Sensitive protection equipment	EN ISO 12100
	behaftetes Betriebsmittel		
SRASW	Sicherheitsbezogene Anwendungssoftware	Safety related application software	DIN EN ISO 13849-1
SRECS	Sicherheitsbezogenes elektrisches	Safety related electrical control system	IEC 62061
	Steuerungssystem		
SRESW	Sicherheitsbezogene Embedded-Software	Safety related embedded software	DIN EN ISO 13849-1
SRP	Sicherheitsbezogenes Teil	Safety related part	DIN EN ISO 13849-1
SRP/CS	Sicherheitsbezogenes Teil von Steuerungen	Safety related part of control systems	DIN EN ISO 13849-1
SRS	Spezifikation der Sicherheitsanforderungen	Safety requirements specification	IEC 61511
ST	Stromventile	Flow control valves	Festo
SW1A, SW1B,	Positionsschalter	Position switces	DIN EN ISO 13849-1
SW2			
SYNC	Objekt zur Synchronisierung von	Synchronisation objects	
	Teilnehmern im Netzwerk		
TE	Testeinrichtung	Test equipment	DIN EN ISO 13849-1
Techn. Schutz-	Schutzmaßnahmen, bei denen Schutzein-	Protective measure using safeguards to	EN ISO 12100
maßnahmen	richtungen zur Anwendung kommen, um	protect persons from the hazard which	
	Personen vor Gefährdungen zu schützen,	cannot reasonably be eliminated or from	
	die durch inhärent sichere Konstruktion	the risks which cannot be sufficiently	
	nicht in angemessener Weise beseitigt	reduced by inherently safe design	
	werden können, oder vor Risiken zu	measures	
	schützen, die dadurch nicht ausreichend		
	vermindert werden können		
ТМ	Gebrauchsdauer	Mission time	DIN EN ISO 13849-1

Festo worldwide

Slovakia Festo spol. s r.o. Gavlovicová ul. 1 83103 Bratislava 3 Tel. +421 (0)2 49 10 49 10, Fax +421 (0)2 49 10 49 11 E-mail: info_sk@festo.com

Slovenia Stovenia Festo d.o.o. Ljubljana IC Trzin, Blatnica 8 1236 Trzin Tel. +386 (0)1 530 21 00, Fax +386 (0)1 530 21 25 E-mail: info_si@festo.com

South Africa Festo (Pty) Ltd. 22-26 Electron Avenue P.O. Box 255 Isando 1600 Tel. +27 (0)11 971 55 00, Fax +27 (0)11 974 21 57 E-mail: info_za@festo.com

Spain Festo Pneumatic, S.A.U. Avenida Granvia, 159 Distrito Económico Granvia L'H 08908 Hospitalet de Llobregat Tel.: 901243660, Fax: 902243660 Tel.: 434 93 261 64 00, Fax +34 93 261 64 20 E-mail: info_es@festo.com

Sweden Sweden Festo AB Stillmansgatan 1 Box 21038 200 21 Malmö Tel. +46 (0)20 38 38 40, Fax +46 (0)40 38 38 10 E-mail: order@festo.se

Switzerland Festo AG Moosmattstrasse 24 8953 Dietikon ZH Tel. +41 (0)44 744 55 44, Fax +41 (0)44 744 55 00 E-mail: info_ch@festo.com

Taiwan Festo Co., Ltd. Head Office 9, Kung Sth Road Linkou 2nd Industrial Zone Linkou Dist., New Taipei City 24450 Taiwan, R.O.C. Tel. +886 (0)2 26 01-92 81, Fax +886 (0)2 26 01-92 81, Fax +886 (0)2 26 01-92 86.7

Thailand Festo Ltd. 67/1 Phaholyothin Rd., T. Klong 1, A. Klongluang Pathumthani 12120 Tel. +66 29 01 88 00, Fax +66 29 01 88 30 E-mail: info_th@festo.com

Turkey Festo San. ve Tic. A.S. Tuzla Mermerciler Organize Sanayi Bölgesi 6/18 34956 Tuzla - Istanbul/TR 34956 Tuzla - Istanbul/TR Tel. +90 (0)216 585 00 85, Fax +90 (0)216 585 00 50 E-mail: info_tr@festo.com

Ukraine Ukraine DP Festo ul. Borisoglebskaya,11 04070, Kiev Tel. +380 (0)44 239 24 30, Fax +380 (0)44 463 70 96 E-mail: orders_ua@festo.com

United Kingdom

United Kingdom Festo Limited Applied Automation Centre Caswell Road Brackmills Trading Estate Northampton NN4 7PY Tel. ++44 (0)1604 / 66 70 00, Fax ++44 (0)1604 / 66 70 01 E-mail: info_gb@festo.com

United States Festo Corporation (New York) 395 Moreland Road P.O. Box 18023 P.O. Box 18023 Hauppauge, NY 11788 Call Toll-free 800/993 3786 Fax Toll-free 800/963 3786 Tel. +1(631) 435 88 00, Fax +1(631) 435 80 26 E-mail: customer.service@us.festo.com

Venezuela Festo C.A. Festo C.A. Av. 23 esquina con calle 71 N° 22-62, Edif. Festo. Sector Paraíso Maracaibo - Venezuela Tel. +58 (261) 759 11 20/759 41 20/759 44 38, Fax +58 (261) 759 04 55 E-mail: festo@festo.com.ve

Vietnam

Vietnam Festo Co Ltd (Cong Ty TNHH FESTO) No. 1515 – 1516 Van Dai Dong Street Ward An Phu, District 2 Ho Chi Minh City Tel. +84 (8) 62 81 44 45 3 – 4454, Fax +84 (8) 62 81 44 42 E-mail: info_vn@festo.com

Argentina Festo S.A. Edison 2392 (1640) Martínez Prov. Buenos Aires Tel. +54 (011) 4717 82 00, Fax +54 (011) 4717 82 82 E-mail: info@ar.festo.com

Australia Australia Festo Pty. Ltd. Head Office (Melbourne) 179-187 Browns Road P.O. Box 261 Noble Park Vic, 3174 Tel. +61(0)3 97 95 95 55, Fax +61(0)3 97 95 97 87 E-mail: info_au@festo.com

Austria Festo Gesellschaft m.b.H. Linzer Straße 227 Tel. +43 (0)1 910 75-0, Fax +43 (0)1 910 75-250 E-mail: automation@festo.at

Belarus IP Festo Masherov avenue, 78 220035 Minsk Tel. +375 (0)17 204 85 58, Fax +375 (0)17 204 85 59 E-mail: info_by@festo.com

Belgium Festo Belgium sa Rue Colonel Bourg 101 1030 Bruxelles Tel. +32 (0)2 702 32 11, Fax +32 (0)2 702 32 09 E-mail: info_be@festo.com

Belgium Festo Belgium nv Kolonel Bourgstraat 101 1030 Brussel Tel. +32 (0)2 702 32 11, Fax +32 (0)2 702 32 09 E-mail: info_be@festo.com

Festo Brasil Ltda

Festo Brasil Ltda Rua Guiseppe Crespi, 76 KM 12,5 - Via Anchieta 04183-080 São Paulo SP-Brazíl Tel. +55 (0)11 50 13 16 00, Fax +55 (0)11 50 13 18 68 E-mail: info_br@festo.com

Bulgaria Festo EOOD 1592 Sofia Bul. Christophor Kolumb 9 Tel. +359 (0)2 960 07 12, Fax +359 (0)2 960 07 13 E-mail: info_bg@festo.com

Canada Canada Festo Inc. 5300 Explorer Drive Mississauga, Ontario L4W 5G4 Tel. +1 (0)905 624 90 00, Fax +1 (0)905 624 90 01 E-mail: info_ca@festo.com

Chile Festo S.A. Avenida Américo Vespucio, 760 Pudahuel Santiago Tel. +56 2 690 28 00, Fax +56 2 690 28 60 E-mail: info.chile@cl.festo.com

China Festo (China) Ltd. 1156 Yunqiao Road, Jinqiao Export Processing Zone, Pudong, 201206 Shanghai Tel. +86 21 60 81 51 00, Fax +86 21 58 54 03 00 E-mail: info_cn@cn.festo.com

Colombia Colombia Festo Ltda. Autopista Bogotá - Medellín Km 6 (costado sur) Tenjo, Cundinamarca Tel. +57 (1) 865 77 88, Fax +57 (1) 865 77 88 Ext.287 E-mail: mercadeo@co.festo.com

Croatia Croatia Festo d.o.o. Nova Cesta 181 10000 Zagreb Tel. +385 (0)1 619 19 69, Fax +385 (0)1 619 18 18 E-mail: info_hr@festo.com

Czech Republic Festo, s.r.o. Modřanská 543/76 147 00 Praha 4 Tel. +420 261 09 96 11, Fax +420 241 77 33 84 E-mail: info_cz@festo.com

Denmark Festo A/S Islevdalvej 180 2610 Rødøvre Tel. +45 70 21 10 90, Fax +45 44 88 81 10 E-mail: info_dk@festo.com

Estonia Estonia Festo OY AB Eesti Filiaal A.H. Tammsaare tee 118B 12918 Tallinn Tel. +372 666 15 60, Fax +372 666 15 61 E-mail: info_ee@festo.com Finland Finland Festo OY Mäkituvantie 9 P.O. Box 86 01511 Vantaa Tel. +358 (09) 87 06 51, Fax +358 (09) 87 06 52 00 E-mail: info_fi@festo.com

France Festo Eurl Festo Eurl ZA des Maisons Rouges 8 rue du clos sainte Catherine 94360 Bry-sur-Marne Tel. +33 (0) 820 20 46 40 (numéro indigo), Fax +33 (0) 820 20 46 41 E-mail: info_fr@festo.com

Germany Festo AG & Co. KG Postfach Postfach 73726 Esslingen Ruiter Straße 82 73734 Esslingen Tel. +49 (0)711 347 0, Fax +49 (0)711 347 26 28 E-mail: info_de@festo.com

Greece Festo Ltd. 40 Hamosternas Ave. P.C. 11853 Athens Tel. +30 210 341 29 00, Fax +30 210 341 29 05 E-mail: info_gr@festo.com

Hong Kong Festo Ltd. 6/F New Timely Factory Building, 497 Castle Peak Road, Kowloon, Hong Kong Tel. + 852 227 43 83 79, Fax + 852 27 86 21 73 E-mail: info_hk@festo.com

Hungary Festo Kft. Festo Ktt. Csillaghegyi út 32-34. 1037 Budapest Hotline +36 1 436 51 00 Tel. +36 1 436 51 11, Fax +36 1 436 51 01 E-mail: info_hu@festo.com

India Festo Controls Private Ltd. 237B, Bommasandra Industrial Area, Bangalore Hosur Highway, Bangalore 560 099 Tel. +91 (0)80 22 89 41 00, Fax +91 (0)80 27 83 20 58 / 27 83 33 62 E-mail: info_in@festo.com

Indonesia PT. Festo JL. Sultan Iskandar Muda No. 68 Arteri Pondok Indah Jakarta 12240 Tel. +62 (0)21 27 50 79 00, Fax +62 (0)21 27 50 79 98 E-mail: info_id@festo.com

Iran Festo Pneumatic S.K. Festo Pneumatic S.K. # 2, 6th street, 16th avenue, Km 8, Special Karaj Road P.O.Box 15815-1485 Teheran 1389793761 Tel. +98 (0)21 44 52 24 09, Fax +98 (0)21 44 52 24 08 E-mail: Mailroom@festo.ir

Ireland Festo Limited Unit 5 Sandyford Park Sandyford Industrial Estate Dublin 18 Tel. +353 (0)1 295 49 55, Fax +353 (0)1 295 56 80 E-mail: info_ie@festo.com

Israel Israel Festo Pneumatic Israel Ltd. P.O. Box 1076 Ha'atzma'ut Road 48 Yehud 56100 Tel. +972 (0)3 632 22 66, Fax +972 (0)3 632 22 77 E-mail: info_il@festo.com

Italy Festo SpA Via Enrico Fermi 36/38 20090 Assago (MI) Tel. +39 02 45 78 81, Fax +39 02 488 06 20 E-mail: info_it@festo.com

Japan Festo K K Festo K.K. 1-26-10 Hayabuchi Tsuzuki-ku Yokohama 224-0025 Tel. +81 (0)45 593 56 10 / -5611, Fax +81 (0)45 593 56 78 E-mail: info_jp@festo.com

Korea South Festo Korea Co., Ltd. 470-1 Gasan-dong Geumcheon-gu Seoul #153-803 Tel. +82 (0)2 850 71 14, Fax +82 (0)2 864 70 40 E-mail: info_kr@festo.com 135242 en 2011/11

Latvia Festo SIA A. Deglava iela 60 1035 Riga Tel. +371 67 57 78 64, Fax +371 67 57 79 46 E-mail: info_lv@festo.com

Lithuania Festo, UAB Partizanu 63M 50306 Kaunas Lietuva Tel. +370 (8)7 32 13 14, Fax +370 (8)7 32 13 15 E-mail: info_It@festo.com

Malaysia Festo Sdn. Berhad 10 Persiaran Industri Bandar Sri Damansara Wilayah Persekutuan 52200 Kuala Lumpur Tel. +60 (0)3 62 86 80 00, Fax +60 (0)3 62 75 64 11 E-mail: info_my@festo.com

Mexico Festo Pneumatic, S.A. Av. Ceylán 3, Col. Tequesquináhuac 54020 Tlalnepantla Estado de México Tel. +52 (01)55 53 21 66 00, Fax +52 (01)55 53 21 66 55 E-mail: festo.mexico@mx.festo.com

Netherlands

Festo B.V. Schieweg 62 2627 AN Delft Tel. +31 (0)15 251 88 99, Fax +31 (0)15 251 88 67 E-mail: info@festo.nl

New Zealand

Festo Ltd. 20 Fisher Crescent Mount Wellington Auckland Auckland Tel. +64 (0)9 574 10 94, Fax +64 (0)9 574 10 99 E-mail: info_nz@festo.com

Nigeria Festo Automation Ltd. Motorways Centre, First Floor, Block C Alausa, Ikeja, Lagos Tel. +234 (0)1 794 78 20, Fax +234 (0)1 555 78 94 E-mail: info@ng-festo.com

Norway Festo AS Ole Deviks vei 2 0666 Oslo Tel. +47 22 72 89 50, Fax +47 22 72 89 51 E-mail: info_no@festo.com

Peru Festo S.R.L. Amador Merino Reyna 480 San Isidro Lima Tel. +51 (1) 219 69 60, Fax +51 (1) 219 69 71 E-mail: festo.peru@pe.festo.com

Philippines Festo Inc. Festo Building KM 18, West Service Road South Super Highway 1700 Paranaque City Metro Manila Tel. +63 (2) 77 66 888, Fax +63 (2) 82 34 220/21 E-mail: info_ph@festo.com

Poland Festo Sp. z o.o. Janki k/Warszawy ul. Mszczonowska 7 ul. Mszczonowska / 05090 Raszyn Tel. +48 (0)22 711 41 00, Fax +48 (0)22 711 41 02 E-mail: info_pl@festo.com

Portugal Festo – Automação, Unipessoal, Lda. Rua Manuel Pinto De Azevedo, 567 Apartado 8013 4109-016 Porto Contact Center: 707 20 20 43 Tel. +351 22 615 61 50, Fax +351 22 615 61 89 E-mail: info@pt.festo.com

Romania Romania Festo S.R.L. St. Constantin 17 010217 Bucuresti Tel. +40 (0)21 310 31 90, Fax +40 (0)21 310 24 09 E-mail: info_ro@festo.com

Russia Russia OOO Festo-RF Michurinskiy prosp., 49 119607 Moscow Tel. +7 495 737 34 00, Fax +7 495 737 34 01 E-mail: info_ru@festo.com

Singapore Festo Pte. Ltd. 6 Kian Teck Way Singapore 628754 Tel. +65 62 64 01 52, Fax +65 62 61 10 26 E-mail: info@sg.festo.com