Deep underground, close to Lake Geneva, at the Large Hadron Collider (LHC) particle accelerator of CERN, the European Organization for Nuclear Research, huge detectors sift through a stream of subatomic particles and collect gigantic volumes of data, which are analysed using powerful algorithms. Modern technologies are making the tiny particles that hold the cosmos together visible on a larger scale.

The existence of matter

In 2012, a milestone in particle physics was achieved with the discovery of the Higgs boson particle. Scientists Robert Brout, François Englert and Peter Higgs had first predicted its existence back in the 1960s. According to the Standard Model of particle physics at the time, there should strictly speaking be no mass. Subatomic particles should move at the speed of light. Yet, as previously stated, they should be massless. The three researchers nevertheless developed the theory of the Higgs field. According to this theory, the Higgs field slows down the smallest particles – comparable with beads flying through honey – giving them inertia and therefore mass. 50 years later, the big breakthrough finally came. Protons were accelerated at virtually the speed of light in the LHC to allow them to collide. Higgs bosons broke free from the Higgs field and it was thus possible to measure them and prove that they actually exist. And so the existence of matter was proven. Higgs and Englert were awarded the Nobel Prize in Physics in 2013 for their theory. Brout had died in 2011.