Festo si prepara per la produzione intelligente del futuro. Nel nostro ruolo di leader della tecnologia e dell'innovazione nell'automazione industriale, puntiamo ad affermare l'intelligenza artificiale (IA) come una tecnologia e una competenza chiave e ad utilizzarla costantemente per le soluzioni di automazione dei nostri clienti. Stiamo esplorando nuove possibilità e aree di applicazione.
L'intelligenza artificiale sta per una varietà di metodi e tecniche. Tra di essi, metodi come l'apprendimento profondo, quello per rinforzo o l'IA bio-ispirata. Molti di questi metodi non sono nuovi, ma una maggiore potenza di calcolo e un'infrastruttura modernizzata ne permettono ora un uso diffuso nella produzione industriale. L'IA permette di affrontare problemi prima irrisolvibili: per esempio, nell'ingegneria del controllo di sistemi complessi con una forte dinamica dei fluidi, spesso non è possibile lavorare con metodi basati su modelli. Le astrazioni sono troppo imprecise complesse. Con l'apprendimento per rinforzo potremmo insegnare tali sistemi in futuro.
Reinforcement learning enables machines to learn independently how to achieve a specified objective or solve a problem. The main benefit is that the computer finds a way itself, which may be quite different to the route that a human with learned experience would take. In many cases, this produces solutions that nobody had thought of before. The scope of application for this is wide, as reinforcement learning opens up vast potential, from control technology to robotics and supply chain planning.
Deep learning is particularly suited to individual skills that a robot needs to be very good at, such as gripping unfamiliar objects using the same gripper. Festo applies deep learning algorithms to robotics in the area of vision and also uses them to combine sensors for haptics, acoustics and infrared. This is necessary because robots have so far often operated based on cameras and stop working if the lighting fails, for example. Haptic, acoustic and infrared sensors make robots more robust and enable them to function in more difficult conditions, too.
In the field of distributed inhomogeneous systems, we are investigating whether it is possible for different systems to learn from each other: for example if a handling system can pass on its knowledge to a robot. In this case, passing on knowledge doesn't mean exchanging data, but rather that the systems communicate with each other and share their learned knowledge with each other. If this is possible, entire systems can optimise themselves and become better as more intelligent components are installed. For example, if a ball screw axis and an oversized cylinder are operating in succession, the cylinder notifies the ball screw axis that it needs to extend at a higher speed rather than at full pressure. This means that they save energy together and are more efficient.
Alongside other joint research activities, the University of Tübingen and Festo are working on the generalisability and transferability of algorithms. To be able to transfer algorithms, it is important that we don’t need to train a separate model for every system and every application scenario.