trends in automation:Ullrich 教授,PTB 以其精确的时钟而闻名,因此被认为是时间方面的权威。但是时间到底是什么?
Joachim H. Ullrich 博士教授:这是一个非常复杂的问题。我们物理学家都尽量简化这个问题,并使用可预测的循环过程来定义时间,例如地球自转或钟摆。诺贝尔奖获得者和物理技术研究院院长阿尔伯特·爱因斯坦给时间下了一个非常实用的定义:“时间就是您在时钟上读到的东西。” 然而,自从爱因斯坦以来,我们也知道时间是相对的。例如,当我们在运动或处在重力场中时,时间走得更慢。人类对时间的感知也是相对的。这是爱因斯坦经常引用的另一句话:“当您坐在热炉子上两分钟,感觉就像两个小时。但是,当您和漂亮女孩坐上两个小时,感觉就像两分钟。这就是相对论!”
还有许多未回答的问题,例如时间是否有起点或终点,以及在人类的感知中,现在还能持续多久。人体生物钟和我们如何对待时间的文化差异也是目前科学界非常有趣的话题。
trends in automation:您如何测量时间?
Ullrich:例如,用钟摆。钟摆越短,摆动越快,测量时间就越准确。更精确的是石英钟,其中电荷让晶体能每秒振荡 30,000 次以上。我们目前拥有的最精确的时钟是原子钟,尽管原子本身并不振荡。相反,我们利用电磁辐射,或者更准确地说,利用微波。微波的振荡速度比石英晶体快得多,大约每秒 90 亿次。我们利用微波辐射来激发铯原子的电子。因为这仅在辐射具有非常特定的振荡频率时才起作用,所以我们可以用它来定义和精确地确定一秒钟的值。
当然,我们必须不断检查我们是否设置了正确的时钟脉冲,以及电子是否真的被激发。为了做到这一点,我们首先通过磁场和微波场以水平光束发射铯原子,然后用一个仔细定位的探测器只计算带有激发电子的原子。在我们两个最精确的时钟 CSF1 和 CSF2 中,我们有不同的布局,像喷泉一样通过微波场向上发射铯原子。这些原子在向下返回的途中第二次穿过微波场。有了这些原子钟,我们可以精确地把一秒钟定义到十六位小数。
trends in automation:手表或台钟不需要如此精确。那我们需要它做什么?
Ullrich:误差有累积效应,而且发生得相对较快。为了保证长期的高精度,我们需要非常精确的时钟。准确计时在科学界尤为重要。我们在物理学方面的关键任务之一是研究精细结构常数(包括光速和普朗克常数)等基本物理常数是否真的是常数。有证据表明情况并非如此。如果这一理论得到证实,将会产生深远的影响,因为许多定律和模型都是基于这些基本物理常数。
早在 20 世纪 30 年代,时间研究人员就曾经历过被精确测量打破的所谓安全假设,当时第二个假设仍被定义为地球自转的一部分。我们研究院调试的石英钟是当时最精确的时钟。研究人员发现,地球的自转速度正在减慢,变化很大,而且并不总是像现有的时间定义假设的那样以相同的速度运动。
trends in automation:原子钟也有实际用途吗?
Ullrich:例如,美国 GPS 系统或俄罗斯 GLONASS 的定位卫星以及欧洲伽利略系统的第一批卫星都使用原子钟。这些系统利用信号在卫星和地球之间的传输时间来识别位置,因此需要非常精确的时间规范。还有一些在不久的将来使用时钟进行太空测量的计划。这将实现对两颗卫星的相对位置进行高精度的测量,它们的变化可以用来完整绘制地球重力场。有了地球上类似的测量和更精确的时钟,甚至有可能探测到不同的质量分布,从而在未来追踪矿物资源。这些是我们目前正与汉诺威大学 QUEST 卓越小组的其他研究人员一起研究的课题。
trends in automation:卫星上的时钟是否具有与 PTB 原子钟相同的复杂结构?
Ullrich:它们根据同样的原理工作,但是稍微紧凑一点,不需要那么精确。在任何情况下,先前的信号传输都会导致微小的偏差。如今原子钟可以很容易地买到,用途十分广泛。它们在地球上的应用成本在几百到大概 10 万欧元之间。对于卫星应用来说,它们要贵得多——而且得益于先进的技术,通常可以在不需要任何维护的情况下运行很多年。
trends in automation:您说这项技术很复杂。然而,像 PTB 里这样的原子钟会失灵吗?
Ullrich:当然有可能,但是我们有备用原子钟。仅在我们研究院,我们就有四个主要原子钟在正常运转,它们是协调世界时的一部分。例如,为了给无线电时钟提供时间,无线电波从法兰克福附近的 Mainflingen 用长波发射机发射出来,现场还有另外三个原子钟,它们定期与我们的时钟同步。
trends in automation:您如何确保全世界的时钟都是正确的?
Ullrich:正如我之前提到的,我们有所谓的协调世界时,它对 24 个时区有效,由全世界大约 400 个原子钟决定。这些时钟相互比较,并生成平均值。不太精确的时钟比更精确的时钟具有更低的权重。然后检查这个值,以确定它是否与世界上最好的时钟相匹配,包括我们在 PTB 的原子钟。自 1875 年以来,位于巴黎附近塞弗勒的国际计量局 (BIPM) 将在此过程中确定的值作为协调世界时发布。每月发布一次。同样重要的是,所有原子钟都要考虑高度,因为根据爱因斯坦的说法,时间受重力场的影响。
trends in automation: How long is the current definition of time likely to be valid?
Ullrich: Certainly for a few more years, though the next generation of clocks is already in sight. These so-called optical clocks are likely to be at least several hundred times more accurate than the best atomic clocks available today. They operate according to a similar principle. However, the radiation that we use here to excite the electrons has an oscillation frequency 100,000 times higher and is in the visible range. Instead of
microwave radiation, optical clocks run with light from highprecision lasers.
At the PTB we already have two different optical clocks, both of which are around ten times more accurate than our atomic clocks. Over the coming years, however, we will have to compare and observe different optical clocks around the world to determine whether they all tick the same and with what kind of inaccuracy. This will take at least as long as it takes for the definition of a second to be adapted to the new technical possibilities.
trends in automation: Which role does collaboration with international partners play in such new developments?
Ullrich: Since the signing of the Metre Convention in 1875, we metrologists work together very closely and constructively, which I think is excellent. Of course, there is also competition. At the end of the day, everyone wants to have the best clock. In this regard, we have been very successful. Our fountain atomic clocks are among the most accurate in the world. In the area of optical clocks, we are currently involved in a friendly head-to-head race with our partner, the National Institute of Standard and Technology (NIST) in the USA.
trends in automation: Professionally, you work very intensively on this topic. Does your job influence your own personal relationship with time?
Ullrich: I think time is an extremely valuable asset. I therefore try to use it wisely. For example, I complete various tasks that require intensive concentration in blocks if possible. When that is the case I don’t like to be disturbed, because you work extremely inefficiently if you have to keep starting over again. I generally tend to work like that early in the morning or at weekends, and tend to use my mobile phone and the Internet very little.
The most difficult thing is getting the balance right between time spent working and time with my family. This is partly due to the fact that I love my job and often don’t even see it as work. I sometimes forget the time.
Joachim Ullrich has been President of the Physikalisch-Technische Bundesanstalt (PTB), Germany’s national metrology institute, based in Braunschweig since 2012. Prior to that, he was was Director of the Max Planck Institute for Nuclear Physics in Heidelberg and headed up the Experimental Few-Particle Quantum Dynamics division. He is internationally renowned not only as President of the National Metrology Institute, but also as an expert in quantum physics and experiments with free-electron lasers carried out at DESY in Hamburg and the SLAC National Accelerator Laboratory in Stanford, USA. He has received numerous awards for his work, including the Gottfried Wilhelm Leibniz Award of the German Research Foundation (DFG) and the Philip Morris Research Prize.