UPM Biomedicals produces a highly biocompatible hydrogel, GrowDex®, which enables researchers worldwide to focus on developing more human-centric tests for pharmaceutical substances, using less animal material. In order for the cells to form tiny organs (organoids and spheroids), they require a fibrous environment that mimics the extracellular matrix in our body. Typically, animal-derived materials are used to create these 3D culture conditions. GrowDex is a ready-to-use hydrogel that is extracted from birch wood and thus does not contain any material of animal or human origin.

The challenge: Dispensing viscous hydrogel with extreme accuracy using a precise valve

GrowDex is thermally stable at temperatures from 0° C to temperatures over 100° C, making it ideal for automation and high-throughput screening. GrowDex is a shear-thinning material. This means that the viscosity changes with the force exerted on the material; when the dispensing pressure is high, it is like liquid and once the pressure is removed, the material immediately sets and becomes viscous again As the nanofibers of cellulose inside the material do not cross-link, they only intertwine, the material is a true hydrogel. This means special attention needs to be paid to the pressure control generated in the dispensing system.

First, the tested hydrogels GrowDex or GrowDex-T were manually diluted with the DMEM cell culture medium and transferred into a glass bottle with a lid. Pressure was added to the bottle using a pressure/vacuum generator (PGVA-1) via a connecting tube. The valve control module VAEM-V precisely controlled the media-separated valve VYKB-F12 in order to dispense the displaced hydrogel mixture into a target vessel. The dispensed quantity was recorded gravimetrically with a pair of scales and used to evaluate the CV value.