Application Note

Synchronisation

Synchronisation of two controllers via I/O, Profibus and CAN

CMMS-AS;
CMMS-ST;
CMMP-AS
Copyright Notice

This documentation is the intellectual property of Festo AG & Co. KG, which also has the exclusive copyright. Any modification of the content, duplication or reprinting of this documentation as well as distribution to third parties can only be made with the express consent of Festo AG & Co. KG.

Festo AG & Co KG reserves the right to make modifications to this document in whole or in part. All brand and product names are trademarks or registered trademarks of their respective owners.

Legal Notice

Hardware, software, operating systems and drivers may only be used for the applications described and only in conjunction with components recommended by Festo AG & Co. KG.

Festo AG & Co. KG does not accept any liability for damages arising from the use of any incorrect or incomplete information contained in this documentation or any information missing therefrom.

Defects resulting from the improper handling of devices and modules are excluded from the warranty.

The data and information specified in this document should not be used for the implementation of safety functions relating to the protection of personnel and machinery.

No liability is accepted for claims for damages arising from a failure or functional defect. In other respects, the regulations with regard to liability from the terms and conditions of delivery, payment and use of software of Festo AG & Co. KG, which can be found at www.festo.com and can be supplied on request, shall apply.

All data contained in this document do not represent guaranteed specifications, particularly with regard to functionality, condition or quality, in the legal sense.

The information in this document serves only as basic information for the implementation of a specific, hypothetical application and is in no way intended as a substitute for the operating instructions of the respective manufacturers and the design and testing of the respective application by the user.

The operating instructions for Festo products can be found at www.festo.com.

Users of this document (application note) must verify that all functions described here also work correctly in the application. By reading this document and adhering to the specifications contained therein, users are also solely responsible for their own application.
Table of contents

1 Components/Software used .. 7

2 Documentation .. 8

3 Electrical installation ... 9

3.1 CMMS-ST/-AS and CMMD-AS ... 9

3.2 CMMP-AS .. 10

4 Configuring the parameters of the CMMP-AS-x controller .. 11

4.1 Configuring the master at the CMMP-AS ... 12

4.1.1 Supplement – Profibus control interface ... 24

4.1.2 Supplement – CAN bus control interface .. 27

4.1.3 Supplement – synchronisation control interface .. 29

4.1.4 Supplement – analogue input as control interface .. 30

4.2 Slave configuration – synchronisation control interface ... 31

4.3 Slave configuration – I/O control interface ... 32

4.3.1 Parallel setup of two synchronous axes ... 32

4.4 Slave configuration – CANopen control interface ... 35

4.5 Slave configuration – Profibus control interface .. 39

5 Starting synchronisation ... 42

5.1 Synchronisation via the "synchronisation" control interface at the CMMP .. 42

5.2 Synchronisation via the "I/O" control interface at the CMMP .. 43

5.2.1 Synchronisation of two parallel axes .. 43

5.2.2 Synchronisation to an axis / a belt ... 45

5.2.3 Sample application – synchronisation .. 46

5.3 Synchronisation via Profibus at the CMMP – S7 example ... 47

5.3.1 Positioning record selection ... 47

5.3.2 Direct drive – use of the cam disc function ... 49

5.4 Synchronisation via CAN at the CMMP – Codesys V3.5 example ... 51

5.4.1 Positioning record selection ... 52

5.4.2 Direct drive – use of the cam disc function ... 54

6 CMMS-x/CMMD-AS configuration ... 56

6.1 Configuring the master .. 56

6.1.1 Supplement – CAN bus / Profibus control interface ... 58

6.1.2 Supplement – analogue input as control interface .. 59

6.2 Slave configuration – synchronisation control interface ... 60

6.3 Slave configuration – I/O control interface ... 63

6.4 Slave configuration – Profibus/CANopen control interface# ... 65

7 Starting synchronisation ... 65

7.1 Synchronisation via the “synchronisation” control interface at the CMMS/CMMD 65

7.2 Synchronisation via the “I/O” control interface at the CMMS/CMMD ... 65

7.3 Synchronisation via bus at the CMMS/CMMD ... 66
Components/Software used

<table>
<thead>
<tr>
<th>Type/Name</th>
<th>Version Software/Firmware</th>
<th>Date of manufacture</th>
</tr>
</thead>
<tbody>
<tr>
<td>CMMP-AS-...-M3/M0</td>
<td>V4.0.1501.2.1</td>
<td>General</td>
</tr>
<tr>
<td>CMMD AS</td>
<td>V1.4.0.3.4</td>
<td>General</td>
</tr>
<tr>
<td>CMMS-AS</td>
<td>V1.4.0.2.4</td>
<td>General</td>
</tr>
<tr>
<td>CMMP-AS</td>
<td>V3.5.1501.5.3</td>
<td>General</td>
</tr>
<tr>
<td>FCT</td>
<td>CMMP-AS-...-M3/M0 V2.5.0.479</td>
<td>General</td>
</tr>
<tr>
<td></td>
<td>CMMP-AS V1.4.2.5</td>
<td>General</td>
</tr>
<tr>
<td></td>
<td>CMMS-AS V1.2.3.85</td>
<td>General</td>
</tr>
<tr>
<td></td>
<td>CMMD-AS V1.0.3.34</td>
<td>General</td>
</tr>
</tbody>
</table>

Table 1.1: Components/Software used
Documentation

2 Documentation

All required documentation (manuals, software, firmware, plug-ins, device description files, function blocks) for your utilised components can be found on Festo website at www.festo.com/cms/et_ee/index.htm → “Support” tab → select “All product information”, or click the following link:

3 Electrical installation

3.1 CMMS-ST/-AS and CMMD-AS

Carry out electrical installation of the motor controller and the motors as described in the manual.
The X10 connections are additionally required for the synchronisation mode. Connect the two interfaces using
an appropriate cable. The pins are wired analogous to each other (pin 1 to pin 1, pin 2 to pin 2 ...).

Minimum wiring requirements: In order to implement synchronous operation at least the following pins must be
connected between the two controllers: A, A#, B, B# and GND (pin 4). N and N# can also be connected. The inter-
face parameters must be set up in accordance with the wiring configuration.
Ideally, the synchronisation cable has an outer shield which is connected to the housing. Additional inner
shields around the twisted pairs, which are connected to GND (pin 4).

A stepper-motor encoder cable (e.g. NEBM-M12G8-E-S-S1G9 [part no. 550749]) with plug (NECC-A-S-S1G9-C2M
[partment no. 564264]) is recommended for use as a cable, in which the incremental encoder signals are twisted in
pairs and the individual pairs are shielded.
Selection as to whether the interface will function as a master or a slave is made later via the software.

![Diagram of CMMS-AS](image)

Figure 1: CMMS-AS as example

The master generates tracking signals A and B, as well as the zero pulse of an incremental encoder.
In addition to the A/B tracking signals, slave input X10 can also process CLK/DIR – pulse/direction and the
CW/CCW pulse in the form of 5 V DC.
The X1 input can also process CLK/DIR – pulse/direction and the CW/CCW pulse in the form of 24 V DC.
Due to the fact that synchronisation of two Festo controllers is dealt with here, synchronisation via X10 master
and X10 slave with EMMS motors will be worked through in the following.
Other synchronisation options can be looked up in the manual.
3.2 CMMP-AS

Carry out electrical installation of the motor controller and the motors as described in the manual. The X10 and X11 interfaces are required in order to synchronise two CMMP controllers.

Interface X11 is the master's incremental encoder output and X10 is the slave's incremental encoder input. Connect the two interfaces using an appropriate cable. The pins are wired analogous to each other (pin 1 to pin 1, pin 2 to pin 2 ...).

Minimum wiring requirements: In order to implement synchronous operation at least the following pins must be connected between the two controllers: A, A#, B, B# and GND (pin 4). N and N# can also be connected. The interface parameters must be set up in accordance with the wiring configuration.

Ideally, the synchronisation cable has an outer shield which is connected to the housing. Additional inner shields around the twisted pairs, which are connected to GND (pin 4).

Pin 5 may not be connected because the controllers (as of M3/M0) supply each other with logic voltage and shutting down a controller has no effect.

A stepper-motor encoder cable of (e.g. NEBM-M12G8-E-S-S1G9 [part no. 550749]) with plug (NECC-A-S-S1G9-C2M [part no. 564264]) is recommended for use as a cable, in which the incremental encoder signals are twisted in pairs and the individual pairs are shielded.

The master generates tracking signals A and B, as well as the zero pulse of an incremental encoder.

In addition to the A/B tracking signals, slave input X10 can also process CLK/DIR – pulse/direction and the CW/CCW pulse in the form of 5 V DC.

The following is based on synchronisation of two CMMP-AS controllers with EMMS-AS motors. Refer to the manual for further information.
4 Configuring the parameters of the CMMP-AS-x controller

Note: Configuration of representative controllers is depicted in the following sections. All settings for which no explicit configuration is stipulated retain their default values. These points must be adapted in accordance with your individual requirements.

In order to configure the controller’s parameters, you’ll need the Festo Configuration Tool (FCT) and the corresponding plug-in for your controller. First install FCT, and then the plug-in. You’ll find the plug-in in the Support Portal after searching for the utilised controller, for example “CMMP-AS”.

Support Portal

Please select a category on the left or use the search.
4.1 Configuring the master at the CMMP-AS

Start the Festo Configuration Tool and create a new project:

Create a new project and enter its name and the author:
Select CMMP-AS, assign a component name to the controller and acknowledge by clicking OK:

Open the dynamic help function by selecting the Help menu and clicking Dynamic Help. You are then always provided with notes concerning the points you're processing at the moment.
Configure your controller, motor and axis type according to your components. For example, if you additionally use a Profibus card which is inserted into an options slot, this must be selected. Only in this way can the Profibus also be configured.

Select the desired control interface at your master controller and mark the “Encoder Emulation (X11/master)” function.

If you use Profibus or CAN bus, observe the supplements in sections 3.1.1 and 3.1.2.
Set the parameters and enter the overall load which the master will have to set into motion.

Set the messages in accordance with your application.
You can edit the default values for the axis after enabling editing. If required, adapt the values in accordance with the calculated limits, for example with PositioningDrives.

Select the homing method and set the homing parameters. The master is referenced to a limit switch in this example. The axis then travels 3.00 mm (axis zero point: 3.00 mm).

After successful homing, null shift has to be saved to the controller. The controller must not be enabled at this point in time.
Certain homing settings can be selected here. In our example it may make sense under certain circumstances to deactivate encoder emulation during homing.

Complete the settings for the system of measures as required for your application. The default values are used for the application depicted here. The drive advances 3 mm after detection by the limit switch.
Configuring the parameters of the CMMP-AS-x controller

This window provides you with the opportunity of limiting motor current. This may be necessary in order to prevent damage to the axis due to excessive applied torque. The values are adapted automatically in the case of motor-axis combinations from Festo. The values can be changed after clicking “Enable Editing”.

Changes to the angle encoder can be made in this tab. As a rule, no settings need to be entered here. The offset angle is determined automatically when switched on.
The revision level of the currently installed firmware can be viewed and basic settings can be entered for the controller in the “Controller” menu.

Settings are entered here including sinusoidal modulation, PFC, enabling with DIN5 and a threshold value of 280 V for undervoltage detection.

The I/Os can be set on the following pages. Adapt them to your circuit.

Acknowledge each page by clicking “Next” until you arrive at the encoder emulation settings.
Configure the encoder emulation parameters in accordance with your application. The line count refers to one revolution of the encoder and can lie within a range of 1 to 8192, or can be precisely 16,384. A correction factor can be set by entering an offset angle. The line count is set to 1024 in our example. None of the options are selected, so that all data will be transferred initially. The master’s actual position is read out. This is the desired function in most synchronisation applications. Reading out the setpoint has the advantage of providing the slave with smoother setpoints, but it only follows the master if controller enabling is set there.

Settings for jogging operation can be selected in this window. Jogging operation is important for the setup mode, for example. Select the desired values.
Different positioning records can be created for the master with the help of the positioning records table, which can then be retrieved via the I/O interface or the bus.

You can specify how the controller will react to various errors in the errors management window. This depends on your application and can be accordingly adapted.
The controller data are calculated by FCT depending on your previous entries. You can select controller data within a range from soft to hard.

Before the controller data are calculated, the data for a motor with open shaft are parameterised. The controller data are recalculated after clicking the “Calculate” button.

The controller provides you with the option of recording measurement data. This function must first be configured. You can optimise your controller parameters with the help of the measurement data.

The data can be viewed in the “Measurement Data” window.
After configuration has been completed, the data have to be transferred to your controller. Go online with FCT to this end and confirm by clicking the “Download” button. Then click the “Save” button so that the data will be retained, even after restarting the controller.
4.1.1 Supplement – Profibus control interface

In order to be able to use the Profibus at the controller, you’ll need an additional plug-in module for insertion into slot 1 or 2. This must be correspondingly configured in FCT.

The control interface must be changed to Profibus DP in the application data menu and “Encoder Emulation (X11/master)” has to be activated.
A new menu item then appears in the tree, namely “Fieldbus”. The corresponding bus settings must be entered here, so that the controller can communicate with the control system.

Use of the factors group can be activated in the “Factors Group” tab. This provides you with the option of, for example, displaying position at the module by means of a user-defined unit of measure instead of as an incremental value.
If you use the “Festo FHPP” protocol, cyclic values can be configured in the FHPP+ Editor which are also transmitted to or from the PLC for each cycle. After clicking the “Edit ...” button, a new window appears at which the values can be selected.
4.1.2 Supplement – CAN bus control interface

If you use the CAN bus control interface, change the control interface to CANopen under operating mode selection in the application data menu.

Then select encoder emulation.

A new menu item then appears in the tree, namely “Fieldbus”. The corresponding bus settings must be entered here, so that the controller can communicate with the control system.
Use of the factors group can be activated in the “Factors Group” tab. This provides you with the option of, for example, displaying position at the module by means of a user-defined unit of measure instead of as an incremental value.

If you use the “Festo FHPP” protocol, cyclic values can be configured in the FHPP+ Editor which are also transmitted to or from the PLC for each cycle.

After clicking the “Edit ...” button, a new window appears at which the values can be selected.
4.1.3 Supplement – synchronisation control interface

The master can be operated via the “Synchronisation” control interface. “Encoder Emulation (X11/master)” is selected to this end, as well as the “homing” mode if required.

For this mode it must be assured that the controller is always configured as a slave and that the “master” function has to be explicitly selected in addition.

The position data are thus provided by another master, from which they are forwarded to a further slave. A controller of this sort cannot be operated, for example, by means of positioning records.

All other required settings are included as of section 4.1.
4.1.4 Supplement – analogue input as control interface

If the analogue input is selected as the control interface, the axis can also be configured as a master. In this case, the master can be operated with either speed or torque control. It must be assured that the slave cannot execute torque control, because the master only transmits the increments which are converted to position, speed and acceleration.

All other required settings are included as of section 4.1.
4.2 Slave configuration – synchronisation control interface

Basic configuration is described in section 4.1. The differences are shown in this section.
With this type of synchronisation it must be assured that the slave reacts to every change at the master. The possibilities for controlling this type of synchronisation are described in section 4.1.

In order to activate this operating mode, “Synchronisation” must be chosen as the control interface under operating mode selection in the application data menu.
“Synchronisation (X10/slave)” is activated automatically. Deselection is not possible.
If homing is required, the “homing” mode must be activated.

Execute homing if necessary.
As soon as the slave is active, it follows the master’s increments for all motion.
4.3 Slave configuration – I/O control interface

4.3.1 Parallel setup of two synchronous axes

Add a new CMMP controller using the “Add” function in the “Components” menu and assign a name to it. Acknowledge by clicking OK.

After configuration of the utilised components has been completed, synchronisation must be activated at the second controller. Click “Application Data” and then “Operating Mode Selection” to this end.
Configure homing for your slave.

In the case of synchronisation with a master axis for identical travel, it's advisable to set the homing method to “Current Position”. This makes subsequent alignment of the two axes to each other possible (see detailed description in section 4.2.1).

Homing options can be selected in “Settings” under “Homing”. The corresponding option can be selected in order to be independent of the synchronisation signal during homing.
Configuring the parameters of the CMMP-AS-x controller

In the case of digital outputs, one is set to “Position Xact = Xtarget” so that a digital output can be queried for synchronous positioning of the slave. The output is active as soon as the actual position is the same as the target position within the scope of the configured window (MC).

This is the only way to query synchronous positioning of the slave. The output must be correspondingly connected to the PLC.

Set the synchronisation data in accordance with your master and the utilised mechanical system (e.g. a gearbox).

Our master reads out an A/B signal, so that this is also selected for the slave.

The line count also corresponds to that of the master.

Reversal of direction is used in order to change the slave’s direction of rotation. It serves as a substitute for reversal of direction in “Environment/Installation” under “Application Data”.

Certain transmission ratios for synchronization can be selected under “Gear Ratio”, so that the axes run synchronously as desired.

Since no gearbox is used in this example, the ratio is set to 1:1.

The speed filter shows the sampling rate at which the X10 interface is queried.

This setting remains at its default value of 0.6 ms.

The options provide you with the opportunity of deactivating or ignoring the A, B track or the zero pulse.

Neither is selected in this example.

In order to control synchronisation, various positioning records must be created by means of which synchronisation is started or ended.

Different possibilities are available to this end, which are described as of section 5.2.
4.4 Slave configuration – CANopen control interface

Basic configuration of the slave is described as of section 4.2. The differences are considered in this section – most of the settings for the CANopen interface are already described for the master axis (see section 4.1.1).

The control interface is set to CANopen under operating mode selection in the application data menu. Then select synchronisation and the flying saw.

A new menu item then appears in the tree, namely “Fieldbus”. The corresponding bus settings must be entered here, so that the controller can communicate with the control system.
In the case of the CMMP-....M3, the tab in FCT appears as follows:

The basic address and the device profile (in this case FHPP) are selected here. An offset for the CAN address, the transmission speed and activation of the fieldbus are set via the DIP switches on the plug-in module (Ext3).

<table>
<thead>
<tr>
<th>DIL switch</th>
<th>CANopen/DriveBus</th>
<th>DeviceNet</th>
<th>PROFIBUS</th>
<th>PROFINET</th>
<th>Ethernet/IP</th>
<th>EtherCAT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Onboard</td>
<td>CAM-CN</td>
<td>CAM-CN</td>
<td>CAM-CN</td>
<td>CAM-CN</td>
<td>CAM-CN</td>
<td>CAM-CN</td>
</tr>
<tr>
<td></td>
<td>plugged in</td>
<td>plugged in</td>
<td>plugged in</td>
<td>plugged in</td>
<td>plugged in</td>
<td>plugged in</td>
</tr>
<tr>
<td>1</td>
<td>NN bit 0</td>
<td>NN bit 0</td>
<td>NN bit 0</td>
<td>Not used</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>NN bit 1</td>
<td>NN bit 1</td>
<td>NN bit 1</td>
<td>Not used</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>NN bit 2</td>
<td>NN bit 2</td>
<td>NN bit 2</td>
<td>Not used</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>NN bit 3</td>
<td>NN bit 3</td>
<td>NN bit 3</td>
<td>Not used</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>NN bit 4</td>
<td>NN bit 4</td>
<td>NN bit 4</td>
<td>Not used</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Bit rate</td>
<td>Bit rate</td>
<td>Bit rate</td>
<td>Not used</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Bit rate</td>
<td>Bit rate</td>
<td>Bit rate</td>
<td>Not used</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Activation of fieldbus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NN = node number

Tab. 3.1 Setting of bit rate and node number

<table>
<thead>
<tr>
<th>DIL switch</th>
<th>1 Mbit/s</th>
<th>500 kBit/s</th>
<th>250 kBit/s</th>
<th>125 kBit/s</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>ON</td>
<td>Off</td>
<td>ON</td>
<td>Off</td>
</tr>
<tr>
<td>7</td>
<td>ON</td>
<td>ON</td>
<td>Off</td>
<td>Off</td>
</tr>
</tbody>
</table>

1) Only for CANopen/Drivebus; for DeviceNet, is limited to 300 kBit/s

Tab. 3.2 Setting of bit rate for CANopen and DeviceNet

<table>
<thead>
<tr>
<th>DIL switch</th>
<th>Fieldbus</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>always activated</td>
</tr>
<tr>
<td></td>
<td>always off</td>
</tr>
</tbody>
</table>
As is also the case with the CMMP-...-M3, the CMMP-...-M0 is not equipped with any plug-in modules. The bus is configured directly via the I/O interface:

<table>
<thead>
<tr>
<th>Pin no.</th>
<th>Designation</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>13</td>
<td>DOUT3</td>
<td>Output freely parameterisable, optionally parameterisable as DIN11</td>
</tr>
<tr>
<td>25</td>
<td>DOUT2</td>
<td>Output freely parameterisable, optionally parameterisable as DIN10</td>
</tr>
<tr>
<td>12</td>
<td>DOUT1</td>
<td>Output freely parameterisable</td>
</tr>
<tr>
<td>24</td>
<td>DOUT0</td>
<td>Controller ready, output permanently assigned</td>
</tr>
<tr>
<td>11</td>
<td>DIN 9</td>
<td>Fieldbus data profile (CiA 402, FHPP), input freely parameterisable</td>
</tr>
<tr>
<td>23</td>
<td>DIN 8</td>
<td>Fieldbus activation communication, Input freely parameterisable</td>
</tr>
<tr>
<td>10</td>
<td>DIN 7</td>
<td>Limit switch 1 (blocks n < 0), input permanently assigned</td>
</tr>
<tr>
<td>22</td>
<td>DIN 6</td>
<td>Limit switch 0 (blocks n > 0), input permanently assigned</td>
</tr>
<tr>
<td>9</td>
<td>DIN 5</td>
<td>Controller enable, input permanently assigned</td>
</tr>
<tr>
<td>21</td>
<td>DIN 4</td>
<td>End stage enable, input permanently assigned</td>
</tr>
<tr>
<td>8</td>
<td>DIN 3</td>
<td>Fieldbus offset node number bit 3, input freely parameterisable</td>
</tr>
<tr>
<td>20</td>
<td>DIN 2</td>
<td>Fieldbus offset node number bit 2, input freely parameterisable</td>
</tr>
<tr>
<td>7</td>
<td>DIN 1</td>
<td>Fieldbus offset node number bit 1, input freely parameterisable</td>
</tr>
<tr>
<td>19</td>
<td>DIN 0</td>
<td>Fieldbus offset node number bit 0, input freely parameterisable</td>
</tr>
<tr>
<td>6</td>
<td>GND24</td>
<td>Reference potential for digital I/Os</td>
</tr>
<tr>
<td>18</td>
<td>+24 V</td>
<td>24 V output</td>
</tr>
<tr>
<td>5</td>
<td>AOUT1</td>
<td>Analogue output freely parameterisable</td>
</tr>
<tr>
<td>17</td>
<td>AOUT0</td>
<td>Analogue output freely parameterisable</td>
</tr>
<tr>
<td>4</td>
<td>+VREF</td>
<td>Reference output for setpoint potentiometer</td>
</tr>
<tr>
<td>16</td>
<td>DIN13</td>
<td>Fieldbus transmission rate bit 1, optionally parameterisable as AIN2</td>
</tr>
<tr>
<td>3</td>
<td>DIN12</td>
<td>Fieldbus transmission rate bit 0, optionally parameterisable as AIN1</td>
</tr>
<tr>
<td>15</td>
<td>#AIN0</td>
<td>Setpoint input 0, differential analogue input</td>
</tr>
<tr>
<td>2</td>
<td>AIN0</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>AGND</td>
<td>Reference potential for analogue signals</td>
</tr>
<tr>
<td>1</td>
<td>AGND</td>
<td>Screening for analogue signals, AGND</td>
</tr>
</tbody>
</table>

As is also the case with the CMMP-...-M3, only the basic address is configured via FCT. The protocol (FHPP, CiA 402), activation of the fieldbus, address offset and transmission speed are set via the I/O interface.
Use of the factors group can be activated in the “Factors Group” tab. This provides you with the option of, for example, displaying position at the module by means of a user-defined unit of measure instead of as an incremental value.

If you use the “Festo FHPP” protocol, cyclic values can be configured in the FHPP+ Editor which are also transmitted to or from the PLC for each cycle. After clicking the “Edit ...” button, a new window appears at which the values can be selected.
4.5 Slave configuration – Profibus control interface

Basic configuration of the slave is described as of section 4.2.
The differences are considered in this section – most of the settings for the Profibus interface are already described for the master axis (see section 3.1.2).

In order to be able to use the Profibus at the controller, you’ll need an additional plug-in module for insertion into slot 1 or 2.
This must be correspondingly configured in FCT.

The control interface must be changed to Profibus DP in the application data menu and the synchronisation and flying saw functions have to be activated.
A new menu item then appears in the tree, namely “Fieldbus”. The corresponding bus settings must be entered here, so that the controller can communicate with the control system.

Use of the factors group can be activated in the “Factors Group” tab. This provides you with the option of, for example, displaying position at the module by means of a user-defined unit of measure instead of as an incremental value.
If you use the “Festo FHPP” protocol, cyclic values can be configured in the FHPP+ Editor which are also transmitted to or from the PLC for each cycle. After clicking the “Edit ...” button, a new window appears at which the values can be selected.
5 Starting synchronization

5.1 Synchronisation via the “synchronisation” control interface at the CMMP

Synchronisation in this operating mode is active immediately after the controller is restarted.

In order to deactivate synchronisation once again, a digital input can be assigned (different than the start input, e.g. Din 9). Synchronisation is stopped when a trailing edge occurs at this input.

Synchronisation can be restarted by permanently setting the corresponding digital input to “1” (in this case Din 9).

And understanding of the input’s function is important when using a digital input for controlling synchronisation of the slave.

After restarting the slave controller, the input is edge-sensitive, i.e. synchronisation is not deactivated until a trailing edge occurs at this input. Whether the input is high or low is unimportant at first. Nor does a rising edge have any effect.

After the first trailing edge at the input, synchronisation is evaluated as level-sensitive.

In order to reactivate synchronisation, the input must be continuously high. The function is deactivated with a continuously low signal.

Sample application: infinite master (e.g. belt drive) and slave axis (e.g. EGC-80-200-…):

The slave is stopped by means of an emergency off (amongst other factors controller enable: low). Synchronisation can now be safely switched off with the corresponding input. By placing the drive back under closed-loop control, undesired start-up of the axis can be prevented regardless of the active positioning record.

The slave can also be synchronised to a moving master.

However, the slave is only synchronised to the corresponding speed. Synchronisation to a moving axis, including synchronisation to the position of the master (see section 4.2.2), is not possible here.
5.2 Synchronisation via the “I/O” control interface at the CMMP

5.2.1 Synchronisation of two parallel axes

Synchronisation is started and stopped again via the slave's positioning records table. In order to have the slave axis run synchronous to the master axis, it's operated relative to the position of the master (mode: RA). The position corresponds to the same master position (position: 0.00). Speeds (additional delta speed relative to the master), acceleration rates and jerk limitation are the values by means of which the slave attempts to synchronise itself to the master. Synchronisation is activated with the first (RA) positioning record (synchronisation: sync).

There are two ways to switch synchronisation back off again. A new positioning record has to be created in both cases (speeds, acceleration rates etc. can be adjusted). The difference involves the selection in the sync column. This option is set to “No Sync” or “Sync out”. With this type of synchronisation (synchronisation of two parallel axes), the selection does not result in any difference with regard to desynchronisation because, as a rule, the axes are mechanically linked and deactivation of synchronisation only makes sense at a standstill.
Starting synchronization

In the case of master-slave operation of two parallel axes (e.g. basic axes of a Cartesian gantry), the following procedure is recommended:

The cross member must be mechanically aligned such that the motors draw nearly identical current at standstill (check via the controller’s trace function: actual current).
The positions of the two axes are set separately.

When the zero pulse is activated at both controllers (master and slave), the motors must first of all be aligned to the zero pulse while disengaged from the mechanical system.
The motors are operated in the synchronous mode to this end until the slave has synchronised itself to the master’s zero pulse after one revolution. The motors can then be remounted to the axis with this setting.

When the zero pulse occurs, the slave is always synchronised to the master’s zero pulse, and thus if there’s any offset from the position on the part of the slave, it’s corrected and synchronised to the master’s position after one revolution (status in Sept. 2015: zero pulse doesn’t work).

After aligning the cross member, synchronisation of the slave is activated before initiating travel at the master, in this case by starting positioning record 1.
Synchronous positioning can be queried via the correspondingly configured output (Xactual = Xtarget).
The slave waits for corresponding signals from the master. As soon as the master is set into motion, the slave follows its position.
Homing can now be started via the master. As soon as the master has been homed, the slave can also be homed to the “current position”. The value should be saved to the encoder in both cases.
The system of measures at the slave must be selected such that it cannot be advanced into the software end positions when the master is set into motion. This may lead to problems if the value saved to the encoder lies outside of the limits or close to them!

The actual positions of both axes can be monitored by means of a PLC in order to detect offsets as early as possible and correct the slave’s position.
In particular after an emergency off, it’s advisable to check the positions in order to avoid damage to the mechanical system.
In order to once again deactivate synchronisation, for example in order to align the slave, positioning record 2 or 3 must be invoked. The axis is no longer synchronised. If the two axes (master and slave) are mechanically coupled, the master axis must not be operated any more.

General comments:
If synchronisation is not explicitly deactivated (digital input, positioning record, cam disc function), it remains active even when control of the slave is toggled!
The function of the digital input for controlling synchronisation is described in detail in section 4.1.
5.2.2 Synchronisation to an axis / a belt

In the case of this application, the slave axis synchronises itself to an axis or a belt which is already in motion. And thus the slave must catch up to the master’s position and speed after synchronisation is started.

The slave’s basic settings are described in section 4.3.1.

The characteristics of the individual positioning records are explained in the following, as well as how the slave axis responds to them.

As an example, it will be assumed that the master rotates infinitely at a constant speed.

(1) Synchronisation is started with one of the three positioning records by means of a corresponding trigger. Selection of the position is relative to the master at the point in time of the trigger signal. Positioning records 2 and 3 provide you with the opportunity of shifting the position, in this case by ±10 mm relative to the master.

The speed set in the positioning records is a delta value. In this case, the slave travels up to 100 mm per second faster than the master with the configured acceleration and deceleration, in order to catch up with its position.

The acceleration and deceleration values are absolute values independent of the master.

(2) This is an option for stopping synchronisation (No Sync). In this case, upon selecting the positioning record, the slave continues to travel 10 mm relative at the configured speed and acceleration rate. The respective positioning record must be selected depending on the direction of travel.

(3) This type of desynchronisation (Sync Out) is similar to the type described in point 2. The difference is that the configured speed is not used, but rather the speed of the master at the point in time of desynchronisation.

(4) These positioning records provide you with the opportunity of traveling to an absolute position after desynchronisation. As already described in points (2) and (3), travel is possible at the configured speed (No Sync) or the master’s speed upon desynchronisation (Sync Out).
5.2.3 Sample application – synchronisation

The slave needs to be synchronised to a moving master:

The master travels at a constant speed.
When a certain trigger signal occurs (1), the slave synchronises itself to the master’s position at a corresponding delta speed (2).
As soon as the slave is synchronised to the master, a digital output is set (if configured, Xactual = Xtarget) (3).
Synchronous positioning is maintained (4) until the desynchronisation signal occurs (5).

Dout (Xactual = Xtarget)
5.3 Synchronisation via Profibus at the CMMP – S7 example

Configure the controller in accordance with the instructions and add it to your control system. There are basically two different ways to control synchronisation via the Profibus. In this case, for the purpose of explanation, a CMMP controller and the function block with revision level 08/2011 (available from the Support Portal) are used.

In the case of parallel axes, a motor with multi-turn encoder should be used if possible.

After one-time only mechanical alignment of the axes, the current positions of the master and the slave can be monitored via the bus.

If a difference is detected, synchronisation can be stopped and the position of the slave can be corrected. The slave is regulated to the master’s actual position.

In general, after switching the master and the slave on, the slave should be regulated to the master’s position. This ensures that both axes are parallel and that stressing due to misalignment of the transverse axis is avoided.

5.3.1 Positioning record selection

Synchronisation can be controlled via the Profibus with the help of configured positioning records. Positioning records are created in accordance with the type of synchronisation to this end, as described in sections 5.2.1 and 5.2.2.

The positioning records are started via the bus, in order to achieve the desired closed-loop control.

Fundamental control of slave synchronisation is explained on the basis of the variables table in the sample project for the function block.

In order to set the controller to closed-loop control, the following, corresponding hardware signals must be available: output stage enable (Din4), controller enable (Din5), safe stop (terminal X3, pin 2) and if applicable the proximity switch (Din 6 and Din 7) if NC limit switches are used.

Set “Halt”, “EnableDrive” and “Stop”, one after the other after the respective acknowledgement, until the controller is set to closed-loop control (“Ready” == 1).
Starting synchronization

In order to be able to activate the positioning records, the controller must be in operation mode (OPM) 0 – corresponds to positioning record selection.

The desired positioning record for starting synchronisation can be selected via “RecordNo” (in this example positioning record number 1), and then started by applying a rising edge to “StartTask”.

As soon as the “AckStart” bit arrives, “StartTask” can be reset to 0. “MotionComplete” (MC) goes to 0. But there’s no signal that can be used for synchronous positioning. If a new positioning record is started during motion, it remains at 0 although the slave might no longer be synchronous. In this case, synchronisation must be checked via a digital output at the slave controller (see section 3.3.1).

In order to once again stop synchronisation of the slave, another appropriate positioning record must be selected from the table of configured positioning records and executed.
5.3.2 Direct drive – use of the cam disc function

With the help of this function, the slave can be synchronised without positioning records via direct drive. However, this is only possible with the CMMP premium controller.

The controller must first of all be set to closed-loop control. The following, corresponding hardware signals must be available to this end: output stage enable (Din4), controller enable (Din5), safe stop (terminal X3, pin 2) and if applicable the proximity switch (Din 6 and Din 7) if NC limit switches are used.

Set “Halt”, “EnableDrive” and “Stop”, one after the other after the respective acknowledgement, until the controller is set to closed-loop control (“Ready” == 1).
Starting synchronization

In order to operate the controller in the direct drive mode, “OPM” must be set to 1. The slave can be synchronised with the help of the cam disc functions. “FuncSet” is activated to this end, and the “FuncNumber” is set to 1. Synchronisation to an external input is active.

Synchronisation is activated by applying a rising edge to “StartTask”. As soon as the “AckStart” bit arrives, “StartTask” can be reset to 0.

Switching to synchronisation with the cam disc function can be monitored with the help of “StateFuncNumber”. In contrast to starting synchronisation via positioning records, for example, it’s not possible to query synchronous positioning via a digital output.
5.4 Synchronisation via CAN at the CMMP – Codesys V3.5 example

Configure the controller in accordance with the instructions and add it to your control system.
There are basically two different ways to control synchronisation via the CAN bus.
In this case, for the purpose of explanation, a CMMP controller and the function block with revision level 10/2015 (available from the Support Portal) are used.

In the case of parallel axes, a motor with multi-turn encoder should be used if possible.
After one-time only mechanical alignment of the axes, the current positions of the master and the slave can be monitored via the bus.
If a difference is detected, synchronisation can be stopped and the position of the slave can be corrected. The slave is regulated to the master’s actual position.

In general, after switching the master and the slave on, the slave should be regulated to the master’s position (optimised mechanical alignment in advance is a prerequisite). This ensures that both axes are parallel and that stressing due to misalignment of the transverse axis is avoided.

The following two sections describe the two synchronisation options.
5.4.1 Positioning record selection

Synchronisation can be controlled via the CAN bus with the help of configured positioning records. Positioning records are created in accordance with the type of synchronisation to this end, as described in sections 5.2.1 and 5.2.2.

The positioning records are started via the bus, in order to achieve the desired closed-loop control.

Fundamental control of slave synchronisation is explained on the basis of the variables table in the sample project for the function block.

In order to set the controller to closed-loop control, the following, corresponding hardware signals must be available: output stage enable (Din4), controller enable (Din5), safe stop (terminal X3, pin 2) and if applicable the proximity switch (Din 6 and Din 7) if NC limit switches are used.

Set “Halt”, “EnableDrive” and “Stop”, one after the other after the respective acknowledgement, until the controller is set to closed-loop control (“Ready” == 1).
In order to be able to activate the positioning records, the controller must be in operation mode (OPM) 0 – corresponds to positioning record selection.

The desired positioning record for starting synchronisation can be selected via “RecordNo” (in this example positioning record number 1), and then started by applying a rising edge to “StartTask”.

As soon as the “AckStart” bit arrives, “StartTask” can be reset to 0.

However, there’s no feedback concerning the slave’s synchronous position. This must be conducted by means of a configured digital output at the slave controller (see section 3.3.1).

In order to once again stop synchronisation of the slave, another appropriate positioning record must be selected from the table of configured positioning records and executed.
5.4.2 Direct drive – use of the cam disc function

With the help of this function, the slave can be synchronised without positioning records via direct drive. However, this is only possible with the CMMP premium controller.

The controller must first of all be set to closed-loop control. The following, corresponding hardware signals must be available to this end: output stage enable (Din4), controller enable (Din5), safe stop (terminal X3, pin 2) and if applicable the proximity switch (Din 6 and Din 7) if NC limit switches are used.

Set “Halt”, “EnableDrive” and “Stop”, one after the other after the respective acknowledgement, until the controller is set to closed-loop control (“Ready” == 1).

In order to operate the controller in the direct drive mode, “OPM” must be set to 1.
The slave can be synchronised with the help of the cam disc function. “FunctionEnable” is activated to this end, “FunctionNumber” is set to 1 and “FunctionGroup” is set to 0. Synchronisation to an external input is active.

Synchronisation is activated in the cam disc function by applying a rising edge to “StartTask”. As soon as the “AckStart” bit arrives, “StartTask” can be reset to 0.

The active “Synchronisation” function in the cam disc function can be monitored with the help of “FunctionEnabled”. In contrast to starting synchronisation via positioning records, for example, it’s not possible to query synchronous positioning via a digital output.
6 CMMS-x/CMMD-AS configuration

The fundamental procedure for configuring a controller is described in section 3.1 using the CMMP-AS as an example, and thus only those settings required for synchronisation are presented below.

6.1 Configuring the master

In the example, the drive is controlled via the controller’s digital inputs and outputs. The “Digital I/O” control interface must be selected to this end, as well as the following additional function: X10 function > Encoder emulation (master).

If further functions are required at the master in addition to the normal I/O mode (single record), for example jogging operation or linked positioning records, mode selection must be activated via DIN9 and DIN12.

Settings for the synchronisation signals are entered via the “Encoder emulation” menu item.
In the case of the CMMS/CMMD controller, the synchronisation signal can only be read out by the master in the form of A/B signals via the X10 output.

The line count can be a value within a range of 32 to 2048, and is thus limited in comparison with the CMMP. The zero pulse (see details in section 4.2.1) can also be suppressed and the direction of rotation can be reversed.

After changing the data, it must be assured that they are uploaded and saved to the controller, after which the controller has to be restarted before the changes become effective.

The line count is set to 1024 in our example and no options are selected.
6.1.1 Supplement – CAN bus / Profibus control interface

Peculiarities regarding controller configuration via CAN bus or Profibus are included in sections 3.1.1 and 3.1.2. Differences between the CMMS/CMMD and the CMMP addressed here.

After one of the control interfaces has been selected, fieldbus settings can be entered. The controller’s address and the transmission rate are not set via FCT, but rather directly at the controller with the DIP switches.
In the case of the CAN bus, the baud rate must also be set and the CANopen interface must be activated.
The factors group can be additionally activated in the “Fieldbus” window so that positions, speeds and acceleration rates can be displayed in user-defined units of measure.

In contrast to the CMMP controller, the option for querying additional information cyclically via FHPP+ is not available in this case.

6.1.2 Supplement – analogue input as control interface

See section 3.1.4
6.2 Slave configuration – synchronisation control interface

The “Synchronisation” control interface can be selected under application data. “X10” and “Synchronisation (slave)” are selected automatically in this case.

Messages for certain events can be set up in the “Messages” tab. The “Target reached” message is of particular interest, by means of which the window for the slave is set up, via which synchronous positioning relative to the master is queried.
In the case of synchronisation with a master axis for identical travel, it's advisable to set the homing method to “Current Position”. This makes subsequent alignment of the two axes to each other possible.

The corresponding outputs can be assigned in the digital I/Os window. In this respect it makes good sense to assign an output to “Synchronous position”, in order to be able to determine whether or not the slave is synchronous to the master. This output becomes active and is set to DOUT2 as a default value, as soon as the “Synchronisation” mode is selected.
Settings for slave synchronisation can be entered under the “Synchronisation” menu item. Selection can be made from a total of three signal types, and if type “CLK/DIRE” or “CW/CCW” is selected, the synchronisation input must also be specified. Furthermore, a line count and a gear ratio must also be entered, as well as zero pulse suppression (refer to section 4.2.1 for details) and rotary direction reversal as options.

Due to the fact that a CMMD controller is used in the example (axis string 1 = master, axis string 2 = slave), and because two axes need to be run parallel to each other, the A/B track with a line count of 1024 and a gear ratio of 1:1 is used.

After changing the data they have to uploaded and saved to the controller, after which the controller has to be restarted.
6.3 Slave configuration – I/O control interface

The control interface must be set to “Digital I/O” and the X10 function must be selected along with “Synchronisation (slave)”. Messages for certain events can be set up in the “Messages” tab. The “Target reached” message is of particular interest, by means of which the window for the slave is set up, via which synchronous positioning relative to the master is queried.
In order to be able to activate synchronisation via I/O, mode switching must be activated. In the synchronisation mode, the signal for synchronous position is read out to DOUT2. This cannot be changed.

Settings for slave synchronisation can be entered under the “Synchronisation” menu item. Selection can be made from a total of three signal types, and if type “CLK/DIR” or “CW/CCW” is selected, the synchronisation input must also be specified. Furthermore, a line count and a gear ratio must also be entered, as well as zero pulse suppression and rotary direction reversal as options.

Due to the fact that a CMMD controller is used in the example (axis string 1 = master, axis string 2 = slave), and because two axes need to be run parallel to each other, the A/B track with a line count of 1024 and a gear ratio of 1:1 is used.

After changing the data they have to uploaded and saved to the controller. The controller is then restarted.

Control of synchronisation via fixed positioning records, and thus the possibility of accurately synchronising a slave to a moving axis, is not available with the CMMS/CMMD.
6.4 Slave configuration – Profibus/CANopen control interface#

See section 5.1.1

7 Starting synchronization

7.1 Synchronisation via the “synchronisation” control interface at the CMMS/CMMD

Synchronisation of the slave is active immediately after the controller is restarted, i.e. the slave responds to each signal transmitted via the X10 interface.

Synchronisation can only be deactivated via the controller enable. In contrast to the CMMP, a digital input cannot be assigned.

No stop input is necessary, so that this switch-off path is eliminated as well.

Separate activation of synchronisation via mode switching (DIN 9 + Din 12) is unnecessary.

7.2 Synchronisation via the “I/O” control interface at the CMMS/CMMD

In order to activate synchronisation, mode switching must also take place via the digital inputs in addition to the usual enables (output stage enable, controller enable, stop input).

DIN 9 and DIN 12 are set to this end.

As soon as the start input (DIN 8) has also been set, the slave travels synchronous to the master.

In order to stop synchronisation, the start input must once again be deactivated.

<table>
<thead>
<tr>
<th>Pin</th>
<th>Designation</th>
<th>Value</th>
<th>Mode = 3 – Synchronisation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A0ND</td>
<td>0 V</td>
<td>Screen for analogue signals</td>
</tr>
<tr>
<td>2</td>
<td>DIN12</td>
<td>Mode switch slave synchronisation "1" = synchronisation</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>DIN10</td>
<td>+10 V ± 4 %</td>
<td>Reference output for setpoint potentiometer</td>
</tr>
<tr>
<td>4</td>
<td>+VREF</td>
<td>Free</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>GND24</td>
<td>Reference potential for digital inputs and outputs</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>DIN1</td>
<td>Record selection 1 (high active)</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>DIN3</td>
<td>24 V</td>
<td>Direction_24 /CCW</td>
</tr>
<tr>
<td>8</td>
<td>DIN5</td>
<td>Controller release (high active)</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>DIN7</td>
<td>Limit switch 1</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>DIN9</td>
<td>Mode switch slave synchronisation "1" = synchronisation</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>DOUT1</td>
<td>24 V100 mA</td>
<td>Output freely programmable – default motion complete (high active)</td>
</tr>
<tr>
<td>12</td>
<td>DOUT3</td>
<td>24 V100 mA</td>
<td>Output freely programmable – default error (low active)</td>
</tr>
<tr>
<td>13</td>
<td>A0ND</td>
<td>0 V</td>
<td>Reference potential for the analogue signals</td>
</tr>
<tr>
<td>14</td>
<td>DIN13</td>
<td>Stop input (low active)</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>DIN11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>AMONO</td>
<td>0 ... 10 V</td>
<td>Analogue monitor output 0</td>
</tr>
<tr>
<td>17</td>
<td>+24 V</td>
<td>24 V100 mA</td>
<td>24 V feed in feed out</td>
</tr>
<tr>
<td>18</td>
<td>DIN0</td>
<td>Record selection 0 (high active)</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>DIN2</td>
<td>24 V</td>
<td>Pulse_24 / CW</td>
</tr>
<tr>
<td>20</td>
<td>DIN4</td>
<td>Output stage enable (high active)</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>DIN6</td>
<td>Limit switch 0</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>DIN8</td>
<td>Start synchronisation</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>DOUT0</td>
<td>24 V100 mA</td>
<td>Ready for operation output (high active)</td>
</tr>
<tr>
<td>24</td>
<td>DOUT2</td>
<td>24 V100 mA</td>
<td>Setpoint output reached (high active)</td>
</tr>
</tbody>
</table>

Table 6.5 Pin allocation: I/O interface [X1] mode 3
7.3 Synchronisation via bus at the CMMS/CMMD

The required enables must be set via the respective bus, in order to set the master and the slave to closed-loop control.
However, actual synchronisation cannot be started via the bus. Analogous to control via the I/O interface, it's started via the digital inputs.
Synchronous positioning of the slave can also only be queried via digital output DOUT2. The MC at the module does not provide any feedback in this regard. This is changed to logic 1 as soon as the slave is in position and synchronisation is switched back off.
The advantage of bus operation is monitoring of the respective positions in order to detect offset as early as possible and avoid damage to the mechanical system.