Abstandssensor
Distance sensor
Capteur de distance
SOEL-RTD-Q50-PP-S-7L

FESTO

(de) Montage- und Bedienungsanleitung
(en) Mounting and operating instructions
(fr) Instructions de service et de montage

8063628
1606d
Maßzeichnung / Dimensional drawing / Plan coté

Abb. 1 / Illustr. 1 / Fig. 1
15300356

Anschluss / Wiring / Raccordement

Abb. 2 / Illustr. 2 / Fig. 2
15400127
Inhalt / Content / Contenu

Deutsch..5
English ..21
Français...37
Inhaltsverzeichnis

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zeichenerklärung</td>
<td>6</td>
</tr>
<tr>
<td>Sicherheitshinweise</td>
<td>6</td>
</tr>
<tr>
<td>Einsatzzweck</td>
<td>7</td>
</tr>
<tr>
<td>Leistungsmerkmale</td>
<td>7</td>
</tr>
<tr>
<td>Funktionsweise</td>
<td>7</td>
</tr>
<tr>
<td>Montage</td>
<td>8</td>
</tr>
<tr>
<td>Elektrische Installation</td>
<td>9</td>
</tr>
<tr>
<td>Bedienung</td>
<td>10</td>
</tr>
<tr>
<td>Allgemeine Bedienung</td>
<td>10</td>
</tr>
<tr>
<td>Einstellungen</td>
<td>12</td>
</tr>
<tr>
<td>Funktionen</td>
<td>12</td>
</tr>
<tr>
<td>Reset</td>
<td>14</td>
</tr>
<tr>
<td>Tasten entriegeln</td>
<td>14</td>
</tr>
<tr>
<td>Mittelwertbildung</td>
<td>15</td>
</tr>
<tr>
<td>Modus Autozero</td>
<td>15</td>
</tr>
<tr>
<td>Modus Autocenter</td>
<td>16</td>
</tr>
<tr>
<td>Modus Maximum-Hold</td>
<td>16</td>
</tr>
<tr>
<td>Modus Differenz-Hold</td>
<td>17</td>
</tr>
<tr>
<td>Modus Messwert-Hold</td>
<td>17</td>
</tr>
<tr>
<td>Optische Daten (typ.)</td>
<td>18</td>
</tr>
<tr>
<td>Elektrische Daten (typ.)</td>
<td>18</td>
</tr>
<tr>
<td>Mechanische Daten</td>
<td>18</td>
</tr>
<tr>
<td>Bestellinformationen</td>
<td>19</td>
</tr>
</tbody>
</table>
Zeichenerklärung

Achtung
Dieses Symbol kennzeichnet Textstellen, die unbedingt zu beachten sind. Die Nichtbeachtung kann zu Personen- oder Sachschäden führen.

Achtung Laser
Dieses Symbol steht vor Textstellen, die vor Gefahren durch Laserstrahlen warnen.

Hinweis
Dieses Symbol kennzeichnet Textstellen, die nützliche Informationen enthalten.

Sicherheitshinweise

Vor der Inbetriebnahme des SOEL-RTD-Q50-PP-S-7L diese Anleitung, insbesondere die Sicherheitshinweise, lesen, verstehen und unbedingt beachten.

Der Anschluss des SOEL-RTD-Q50-PP-S-7L darf nur durch Fachpersonal erfolgen.

Eingriffe und Veränderungen am Gerät sind nicht zulässig!

Einsatzzweck

Der SOEL-RTD-Q50-PP-S-7L ist ein optischer Sensor und misst berührungslos Abstände.

Leistungsmerkmale

- Arbeitsbereich SOEL-RTD-Q50-PP-S-7L: 80 - 300 mm
- 2 Schaltausgänge
- Analogausgang 4-20 mA
- 4 Funktionsanzeigen
- Kompakte Bauform 50 x 50 x 17 mm
- Hohe Auflösung (0,3 mm)
- Hoher Funktionsumfang

Funktionsweise

Arbeitsbereich (Werkseinstellung)
Lichtfleckgeometrie

<table>
<thead>
<tr>
<th>SOEL-RTD-Q50-PP-S-7L</th>
</tr>
</thead>
<tbody>
<tr>
<td>A 80</td>
</tr>
<tr>
<td>B 300</td>
</tr>
<tr>
<td>C 1,5 x 3,5</td>
</tr>
<tr>
<td>D 2 x 4,5</td>
</tr>
<tr>
<td>E 32,5</td>
</tr>
</tbody>
</table>

Alle Maße in Millimeter

Montage

Um die Messungen zu optimieren ist der SOEL-RTD-Q50-PP-S-7L vor Erschütterung konstruktiv zu schützen. Anschlusskabel zum Beispiel mit Kabelbinder gegen Verrutschen sichern.

Vorbereitung
Gerätestecker für das Anschlusskabel entsprechend der Einbautage so verdrehen (Abb. 1, Seite 3), dass das Anschlusskabel frei und ohne abzuknicken angeschlossen werden kann.

Sensoranordnung

Werden bewegte oder gestreifte Objekte erfasst, sollte der Sensor mit seiner Frontscheibe quer zur Bewegungsrichtung, bzw. quer zu den Streifen montiert werden (Abb. 5 + 6).

⇒ Bei stark reflektierenden Objekten ist eine geneigte Montage um ca. 5° erforderlich (Abb. 7).

Der SOEL-RTD-Q50-PP-S-7L ist fertig montiert.
Elektrische Installation

Für den weiteren elektrischen Anschluss der Kabeladern gilt folgende Tabelle:

<table>
<thead>
<tr>
<th>Anschluss</th>
<th>Farbe</th>
<th>Verwendung</th>
<th>Bemerkung</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (WH)</td>
<td>Weiß</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 (BN)</td>
<td>Braun</td>
<td>+ U_B</td>
<td></td>
</tr>
<tr>
<td>3 (GN)</td>
<td>Grün</td>
<td>Als Schaltausgang Q_1. oder Eingang mit optionalen Eingangsfunktionen (siehe „Einstellungen“ Seite 12)</td>
<td>Q_1</td>
</tr>
<tr>
<td>4 (YE)</td>
<td>Gelb</td>
<td>Als Schaltausgang Q_2. oder Schaltfunktion Good Target (erkennbares Objekt im Messbereich)</td>
<td>Q_2 oder Good Target</td>
</tr>
<tr>
<td>5 (GY)</td>
<td>Grau</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6 (PK)</td>
<td>Rosa</td>
<td>Q_A + Analoger Messwert</td>
<td></td>
</tr>
<tr>
<td>7 (BU)</td>
<td>Blau</td>
<td>- U_B</td>
<td></td>
</tr>
<tr>
<td>8 (RD)</td>
<td>Rot</td>
<td>Q_A - Analogische Masse</td>
<td></td>
</tr>
</tbody>
</table>

Nach dem Anlegen der Betriebsspannung ist der SOEL-RTD-Q50-PP-S-7L nach einem Bereitschaftsverzug (≤ 300 ms) betriebsbereit.
Bedienung

Bedienfeld

Taste

- **S** Set-Taste: Einstellung ändern bzw. bestätigen oder Schaltpunkt teachen.
- **T** Toggle-Taste: Funktion auswählen

Die Kennzeichnung der gewählten Einstellungen und des Signalzustands erfolgt durch LEDs.

<table>
<thead>
<tr>
<th>LED</th>
<th>Farbe</th>
<th>Verwendung / Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>BA</td>
<td>Grün</td>
<td>Betriebsanzeige</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ein: betriebsbereit (Run Modus)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Blinkt: Einstellmodus (Set Modus) ist aktiv</td>
</tr>
<tr>
<td>ZA</td>
<td>Rot</td>
<td>Zustandsanzeige</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Funktion aktiviert / nicht aktiviert, oder Bestätigungssignal</td>
</tr>
<tr>
<td>Q1</td>
<td>Gelb</td>
<td>Eingang / Ausgang Q1</td>
</tr>
<tr>
<td>Q2</td>
<td>Gelb</td>
<td>Eingang / Ausgang Q2</td>
</tr>
<tr>
<td>H</td>
<td>Grün</td>
<td>Funktion Q1 Trigger-Eingang oder Q1 Enable-Eingang aktiv</td>
</tr>
<tr>
<td>OK</td>
<td>Grün</td>
<td>Good Traget (Objekt erfasst und im Messbereich)</td>
</tr>
<tr>
<td>T</td>
<td>Grün</td>
<td>Die Funktion Impulsverlängerung ist aktiv</td>
</tr>
<tr>
<td>Z</td>
<td>Grün</td>
<td>Die Funktion Q1 Autocenter oder Q1 Autozero ist aktiv</td>
</tr>
</tbody>
</table>

Die Funktionstabelle ab Seite 12 erklärt die weitere Bedeutung der LEDs Q1, Q2, H, OK, T und Z

Allgemeine Bedienung

Für die Konfiguration des SOEL-RTD-Q50-PP-S-7L sind folgende vier Schritte notwendig:

1. **Einstellmodus aktivieren**
 Die Tasten S und T gleichzeitig 3 Sekunden lang gedrückt halten.

 Wenn nach Ablauf der Zeit die Betriebsanzeige BA blinkt

 Wenn sofort alle LEDs blinken

2. **Funktionen auswählen** (siehe Seite 12)
 Durch Drücken der T-Taste wird die nächste Funktion in der Funktionstabelle gewählt.
 Die Funktionsnummer wird durch ein eindeutiges LED-Muster dargestellt, der Funktionszustand durch die Zustandsanzeige ZA (LED ein = aktiv, LED aus = inaktiv).

 ➞ Erst nach dem Loslassen der T-Taste wird zur nächsten Funktion gewechselt.
Findet kein Wechsel statt:
⇒ T-Taste länger gedrückt halten.

Nach der letzten Funktion folgt wieder die erste Funktion.

⇒ Wurde versehentlich die falsche Funktion gewählt, ist ein direkter Schritt zurück zur letzten Funktionsnummer nicht möglich.
⇒ T-Taste mehrmals drücken, bis die gewünschte Funktion wieder erscheint.
⇒ Oder, Einstellmodus deaktivieren (siehe Punkt 4.) und Vorgang ab Punkt 1. wiederholen.

3. Zustand der Funktion einstellen

⇒ Ändert sich die Zustandsanzeige nicht, oder leuchtet nicht, solange S gedrückt wird:
⇒ Lage des SOEL-RTD-Q50-PP-S-7L hinsichtlich dem Messbereich überprüfen und gegebenenfalls anpassen

Zur Rücknahme der Einstellung S-Taste noch einmal drücken (gilt nicht bei Übernahme eines Messwertes als Schaltpunkt!).

4. Einstellmodus deaktivieren

⇒ Bei Ausfall der Betriebsspannung während des Einstellvorgangs, gehen alle bis dahin gemachten Einstellungen verloren.
Einstellungen

Der SOEL-RTD-Q50-PP-S-7L kann mit den Funktionen 1 bis 24 im Einstellmodus (Teach In) konfiguriert werden.

Taste

Set-Taste: Einstellung ändern bzw. bestätigen oder Schaltpunkt teachen.

Toggle-Taste: Funktion auswählen

Funktionen

<table>
<thead>
<tr>
<th>Nr.</th>
<th>LED Muster</th>
<th>Beschreibung</th>
<th>Zustandsanzeige „ZA“</th>
<th>Werkseinstellung</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>□ □ □ □ □</td>
<td>Modus Ausgang Q₁ wählen.</td>
<td>Ein = Q₁ ist ein Schaltausgang Aus = Q₁ ist kein Schaltausgang</td>
<td>Ein</td>
</tr>
<tr>
<td>3</td>
<td>□ □ □ □ □</td>
<td>Übernahme des aktuellen Messwerts als 2. Schaltpunkt des Schaltausgangs Q₁. Q₁ muss Schaltausgang sein (siehe Funktion Nr. 1)</td>
<td>Ein = Messwert gültig Aus = Messwert ungültig</td>
<td>Aus</td>
</tr>
<tr>
<td>4</td>
<td>□ □ □ □ □</td>
<td>N.C./N.O. Wechsel der Schaltfunktionen für Q₁</td>
<td>Ein = Öffner Aus = Schließer</td>
<td>Schließer</td>
</tr>
<tr>
<td>5</td>
<td>□ □ □ □ □</td>
<td>Modus Ausgang Q₂</td>
<td>Ein = Q₂ ist ein Schaltausgang Aus = Q₂ signalisiert “Good Target”</td>
<td>Aus</td>
</tr>
<tr>
<td>6</td>
<td>□ □ □ □ □</td>
<td>Übernahme des aktuellen Messwerts als 1. Schaltpunkt des Schaltausgangs Q₂. Q₂ muss Schaltausgang sein (siehe Funktion Nr. 5)</td>
<td>Ein* = Messwert gültig Aus* = Messwert ungültig</td>
<td>Good Target</td>
</tr>
<tr>
<td>7</td>
<td>□ □ □ □ □</td>
<td>Übernahme des aktuellen Messwerts als 2. Schaltpunkt des Schaltausgangs Q₂. Q₂ muss Schaltausgang sein (siehe Funktion Nr. 5)</td>
<td>Ein = Messwert gültig Aus = Messwert ungültig</td>
<td>Aus</td>
</tr>
<tr>
<td>8</td>
<td>□ □ □ □ □</td>
<td>N.C./N.O. Wechsel der Schaltfunktionen für Q₂</td>
<td>Ein = Öffner Aus = Schließer</td>
<td>Schließer</td>
</tr>
<tr>
<td>9</td>
<td>□ □ □ □ □</td>
<td>Impulsverlängerung von Q₁ und Q₂ um 50 ms.</td>
<td>Ein = Impulsverlängerung ein Aus = Impulsverlängerung aus</td>
<td>Aus</td>
</tr>
<tr>
<td>10</td>
<td>□ □ □ □ □</td>
<td>Schaltausgang Q₂ zeigt den Zustand “Good Target”. Das Schaltsignal kann mit Funktion Nr. 8 invertiert werden.</td>
<td>Ein = Objekt innerhalb... Aus = Objekt ausserhalb... ...des Messbereichs</td>
<td>Ein</td>
</tr>
</tbody>
</table>

* solange die S-Taste gedrückt wird
<table>
<thead>
<tr>
<th>Nr.</th>
<th>LED Muster</th>
<th>Beschreibung</th>
<th>Zustandsanzeige „ZA“</th>
<th>Werkseinstellung</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td> </td>
<td>Modus Q1=Triggereingang: Mit steigender Flanke an Q1 wird der Messwert bis zum nächsten Triggerereignis festgehalten.</td>
<td>Ein = Q1 ist ein Triggereingang Aus = Q1 ist kein Triggereingang</td>
<td>Aus</td>
</tr>
<tr>
<td>12</td>
<td> </td>
<td>Modus Q1=Enable-Eingang: Dient zum Ein- und Ausschalten des Laserstrahls. Laserstrahl ist ein, solange Q1 = +Uo ist. Laserstrahl ist aus, solange Q1 = -Uo ist. Letzter Messwert liegt an. Bei erneuter Aktivierung verlängert sich die Ansprechzeit entsprechend des eingestellten Mittelwertes.</td>
<td>Ein = aktiv Aus = inaktiv</td>
<td>Aus</td>
</tr>
<tr>
<td>13</td>
<td> </td>
<td>Mittelwertbildung ausschalten: Der erste Messwert wird berücksichtigt. (Seite 15).</td>
<td>Ein = Mittelwertbildung aus</td>
<td>Ein</td>
</tr>
<tr>
<td>14</td>
<td> </td>
<td>Mittelwertbildung 4 ms einschalten: Die ersten 10 Messwerte werden berücksichtigt (Seite 15).</td>
<td>Ein = aktiv Aus = inaktiv</td>
<td>Aus</td>
</tr>
<tr>
<td>15</td>
<td> </td>
<td>Mittelwertbildung 40 ms einschalten: Alle (max. 100 Messwerte) werden berücksichtigt (Seite 15).</td>
<td>Ein = aktiv Aus = inaktiv</td>
<td>Aus</td>
</tr>
<tr>
<td>16</td>
<td> </td>
<td>Analogausgang 0% (4 mA) einstellen: Nach Betätigung der S-Taste entspricht der aktuelle Messwert dem 0%-Wert des Analogausgangs.</td>
<td>Ein* = Objekt innerhalb... Aus* = Objekt ausserhalb... des Messbereichs</td>
<td>0% = 4 mA = Messbereichsanfang</td>
</tr>
<tr>
<td>17</td>
<td> </td>
<td>Analogausgang 100% (20 mA) einstellen: Nach Betätigung der S-Taste entspricht der aktuelle Messwert dem 100%-Wert des Analogausgangs.</td>
<td>Ein* = Objekt innerhalb... Aus* = Objekt ausserhalb... des Messbereichs</td>
<td>100% = 20 mA = Messbereichsanfang</td>
</tr>
<tr>
<td>18</td>
<td> </td>
<td>Modus Autozero Q1: Bewirkt Kennlinien-Verschiebung. Wenn an Q1 +Uo anliegt, wird das aktuelle Messsignal auf den Analogwert 0% = 4 mA eingestellt. Die Kennliniensteigung bleibt gleich. Bei Überschreitung endet die Kennlinie am Messbereichsende oder -anfang.</td>
<td>Ein = Autozero aktiv Aus = Autozero inaktiv</td>
<td>inaktiv</td>
</tr>
<tr>
<td>19</td>
<td> </td>
<td>Modus Autocenter Q1: Kennlinienmittelpunkt-Verschiebung. Wenn an Q1 +Uo anliegt, wird das aktuelle Messsignal auf den Analogwert 50% = 12 mA eingestellt. Die Kennliniensteigung bleibt gleich. Bei Überschreitung endet die Kennlinie am Messbereichsende oder -anfang.</td>
<td>Ein = Autocenter aktiv Aus = Autocenter inaktiv</td>
<td>inaktiv</td>
</tr>
</tbody>
</table>

* solange die S-Taste gedrückt wird

(siehe Funktionstabelle Seite 12-14).

Tasten entriegeln

Mittelwertbildung

Das Messergebnis (Ausgangssignal) wird durch die Mittelwertbildung geglättet. Hierfür werden die Messwerte fortlaufend in einen Speicher gelesen und das arithmetische Mittel gebildet. Die Funktionen 14 und 15 (Seite 13) legen die Anzahl der Messungen (10 oder 100), die zur Mittelwertbildung verwendet werden, fest.

Durch die Abtastrate von 0,4 ms pro Messung liegt die Ansprechzeit zwischen 0,4 ms (ohne Mittelwertbildung) und 40 ms.

Anwendungsbeispiel: Bei der Erfassung von rauen Oberflächen können die hieraus resultierenden Messwertschwankungen ausgeglichen werden.

Ansprechzeit

0,4 ms = 1 Messwert (kein Mittelwert)

4 ms = Mittelwertbildung mit 10 Messwerten

40 ms = Mittelwertbildung mit 100 Messwerten

Modus Autozero

Die Ausgangskennlinie 4 – 20 mA wird mit dieser Funktion verschoben. Ist die Funktion Autozero aktiviert und wird an Q1 +Ub angelegt, wird der aktuelle Messwert mit dem Ausgangswert von 0% = 4 mA gleichgesetzt. Die Steigung der Kennlinie bleibt gleich und der Minimal- und Maximalwert der Kennlinie wird durch den Messbereich begrenzt.

Der Objektabstand muss innerhalb des Messbereichs liegen.
Modus Autocenter

Der Objektabstand muss innerhalb des Messbereichs liegen.

Modus Maximum-Hold

Ist die Funktion Maximum-Hold aktiviert und wird an Q1 die Spannung +U angelegt, wird mit dieser Funktion der Maximalwert des Messsignals bestimmt und gespeichert. Wird an Q1, -U angelegt, wird der letzte Maximalwert am Analogausgang ausgegeben.

Anwendungsbeispiel: Bestimmen des Maximalwertes einer Welle.

Durch Invertierung der Analogkennlinie (siehe Funktion 16 und 17) kann auch das Minimum bestimmt werden.
Modus Differenz-Hold

Anwendungsbeispiel: Inhalt von offenen Behältern oder Paketen prüfen.

Modus Messwert-Hold

Abbildung: Verhalten des Analogausgangs mit und ohne Messwert-Hold
Optische Daten (typ.)

- Arbeitsbereich SOEL-RTD-Q50-PP-S-7L: 80 ... 300 mm
- Messbereich SOEL-RTD-Q50-PP-S-7L: 220 mm
- Auflösung*: 0,3 mm
- Linearität: 0,75 mm
- Lichtart: Gepulstes Laserlicht, rot 650 nm, MTBF>50.000h *
- Lichtfleckgröße: siehe Abb. 4 Seite 8
- Fremdlichtgrenze: Gleichlicht 5000 lux nach EN 60947-5-2
- Laserschutzklasse: 1 (EN 60825/1)

Elektrische Daten (typ.)

- Betriebsspannung Uₐ: 18-30 V DC *
- Stromaufnahme ohne Last: ≤ 40 mA bei 24 V DC
- Schaltausgänge Q₁, Q₂ (PNP, N.O./ N.C. umschaltbar):
 - ≤ 100 mA
 - ≤ 1 kHz
- Schaltfrequenz Q₁, Q₂:
 - 0,4 ms (wenn Mittelwertbildung = aus) / 4ms / 40ms
 - ≤ 100 nF
- Impulsverlängerung Q₁, Q₂:
 - 50 ms (wenn aktiviert)
 - 4-20 mA *
- Analogausgang Qₐ:
 - < 0,02% / °C
 - Verpolungsschutz, Kurzschlussmschutz
- Temperaturdrift:
 - ≤ 300 ms
 - Bereitschaftsverzug:
 - < 300 ms

Mechanische Daten

- Gehäusematerial:
 - ABS, shock-resistant
- Frontscheibe:
 - PMMA
- Schutzart:
 - IP 67 *
- Umgebungstemperaturbereich:
 - -10 ... +60 °C
- Lagertemperaturbereich:
 - -20 ... +80 °C
- Anschlussart:
 - M12 Stecker, 8-polig
- Gewicht:
 - ca. 43 g

*1 kleinste messbare Änderung
*2 bei Umgebungstemperatur : +40 °C
*3 Grenzwerte
*4 empfohlene Bürde ≤ 500 Ohm
*5 Bemessungsspannung 50 V DC
*6 bei angeschraubter Leitungsdose
Bestellinformationen

<table>
<thead>
<tr>
<th>Artikel-Nr.</th>
<th>Sensorentyp</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>537823</td>
<td>SOEL-RTD-Q50-PP-S-7L</td>
<td>Abstandssensor, 80 ... 300 mm, Aufl. 0,3 mm</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2 x PNP, N.O./N.C., 4 ... 20 mA, Stecker M12 8-Pol, *</td>
</tr>
</tbody>
</table>

Zubehör (Nicht im Lieferumfang enthalten)

<table>
<thead>
<tr>
<th>Artikel-Nr.</th>
<th>Zubehör</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>525618</td>
<td>SIM-M12-8GD-5-PU</td>
<td>Anschlusskabel M12, 8-polig, Länge 5 m, gerade, PUR</td>
</tr>
<tr>
<td>525616</td>
<td>SIM-M12-8GD-2-PU</td>
<td>Anschlusskabel M12, 8-polig, Länge 2 m, gerade, PUR</td>
</tr>
<tr>
<td>537786</td>
<td>SOEZ-HW-Q50</td>
<td>Empfohlener Haltewinkel</td>
</tr>
</tbody>
</table>
Table of contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Signs and Symbols</td>
<td>22</td>
</tr>
<tr>
<td>Safety information</td>
<td>22</td>
</tr>
<tr>
<td>Appropriate use</td>
<td>23</td>
</tr>
<tr>
<td>Performance characteristics</td>
<td>23</td>
</tr>
<tr>
<td>Mode of function</td>
<td>23</td>
</tr>
<tr>
<td>Mounting</td>
<td>24</td>
</tr>
<tr>
<td>Electrical installation</td>
<td>25</td>
</tr>
<tr>
<td>Instructions of use</td>
<td>26</td>
</tr>
<tr>
<td>General use</td>
<td>26</td>
</tr>
<tr>
<td>Settings</td>
<td>28</td>
</tr>
<tr>
<td>Functions</td>
<td>28</td>
</tr>
<tr>
<td>Reset</td>
<td>30</td>
</tr>
<tr>
<td>Unlocking keys</td>
<td>30</td>
</tr>
<tr>
<td>Averaging</td>
<td>31</td>
</tr>
<tr>
<td>Automatic zero mode</td>
<td>31</td>
</tr>
<tr>
<td>Automatic centre mode</td>
<td>32</td>
</tr>
<tr>
<td>Maximum hold mode</td>
<td>32</td>
</tr>
<tr>
<td>Difference hold mode</td>
<td>33</td>
</tr>
<tr>
<td>Measured value hold mode</td>
<td>33</td>
</tr>
<tr>
<td>Optical data (typ.)</td>
<td>34</td>
</tr>
<tr>
<td>Electrical data (typ.)</td>
<td>34</td>
</tr>
<tr>
<td>Mechanical data</td>
<td>34</td>
</tr>
<tr>
<td>Order information</td>
<td>35</td>
</tr>
</tbody>
</table>
Signs and Symbols

Warning
This symbol signals passages in the manual which must be observed at all times. Non-compliance can cause injuries or material damage.

Warning Laser
This symbol appears in front of warning passages concerning the danger of laser beams.

Information
This symbol signals passages with useful information.

Safety information

It is essential that this manual, and the safety information in particular, is read, thoroughly understood and observed before setting the SOEL-RTD-Q50-PP-S-7L sensor into operation.

The SOEL-RTD-Q50-PP-S-7L sensor may only be connected by qualified personnel.

Interventions and alterations to the device are not permissible!

The SOEL-RTD-Q50-PP-S-7L sensor is not a safety component as described by EU machine directives and must never be used in applications where human safety is at risk.

The SOEL-RTD-Q50-PP-S-7L sensor complies with laser protection class 1 according to IEC 60825-1. The technical requirements comply with EN 60947-5-2, 2000 edition.
Appropriate use

The SOEL-RTD-Q50-PP-S-7L sensor is not authorised for use in protecting human safety on machines and during technical applications.

The SOEL-RTD-Q50-PP-S-7L is an optical sensor and measures distances without contact.

Performance characteristics

- Operating range SOEL-RTD-Q50-PP-S-7L: 80 – 300 mm
- 2 digital outputs
- Analogue output 4-20 mA
- 4 function displays
- Compact design 50 x 50 x 17 mm
- High resolution (0.3 mm)
- Wide functional range

Mode of function

The SOEL-RTD-Q50-PP-S-7L sensor measures according to the principle of triangulation. The distance between the object and sensor is determined on the basis of the position of the light spot on the detector.
Mounting

To optimise measurements, the SOEL-RTD-Q50-PP-S-7L sensor is to be given constructive protection from vibrations.

For example, secure the connection cable from sliding with a cable tie.

Preparation

Turn the sensor connector plug according to the installation position (Illustr. 1, page 3) so that the connection cable can be freely connected without being bent.

Sensor alignment

Screw the SOEL-RTD-Q50-PP-S-7L sensor to the mounting bracket, e.g. type SOEZ-HW-Q50 (not included in delivery) or a suitable device. Only use the holes provided in the housing (see dimensioned drawing) for this purpose.

If moving or striped objects are to be detected, the front panel of the sensor should be mounted at a right angle to the direction of movement or stripes (Illustr. 5 + 6).

With very reflective objects, the sensor must be mounted at an angle of approx. 5° (Illustr. 7).

The SOEL-RTD-Q50-PP-S-7L sensor is now mounted.

Dimensions of light spot

![Diagram of light spot dimensions]

<table>
<thead>
<tr>
<th>Dimensions of light spot</th>
</tr>
</thead>
<tbody>
<tr>
<td>A 80</td>
</tr>
<tr>
<td>B 300</td>
</tr>
<tr>
<td>C 1.5 x 3.5</td>
</tr>
<tr>
<td>D 2 x 4.5</td>
</tr>
<tr>
<td>E 32.5</td>
</tr>
</tbody>
</table>

All dimensions in mm
Electrical installation

Warning: Pin 1 and pin 5 must not be connected to operational voltage as this will destroy the SOEL-RTD-Q50-PP-S-7L sensor.

Insert the socket of the connection cable into the SOEL-RTD-Q50-PP-S-7L connector and screw tight.

![Connection diagram](illustration)

The following table is valid for other electrical connections of the cable conductors:

<table>
<thead>
<tr>
<th>Connection</th>
<th>Colour</th>
<th>Use</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (WH)</td>
<td>White</td>
<td>+ U_B</td>
<td></td>
</tr>
<tr>
<td>2 (BN)</td>
<td>Brown</td>
<td>+ U_B</td>
<td></td>
</tr>
<tr>
<td>3 (GN)</td>
<td>Green</td>
<td>As signal output Q_1 or input with optional input functions (see “Settings” page 32)</td>
<td>Q_1</td>
</tr>
<tr>
<td>4 (YE)</td>
<td>Yellow</td>
<td>As signal output Q_2 or switching function “good target” (detectable object in measuring range)</td>
<td>Q_2 or good target</td>
</tr>
<tr>
<td>5 (GY)</td>
<td>Grey</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6 (PK)</td>
<td>Pink</td>
<td>QA + analogue measurement</td>
<td></td>
</tr>
<tr>
<td>7 (BU)</td>
<td>Blue</td>
<td>- U_B</td>
<td></td>
</tr>
<tr>
<td>8 (RD)</td>
<td>Red</td>
<td>QA - analogue mass</td>
<td></td>
</tr>
</tbody>
</table>

Once power supply has been connected, the SOEL-RTD-Q50-PP-S-7L is ready for operation after a short stand-by delay (< 300 ms).
Instructions of use

Control panel
The SOEL-RTD-Q50-PP-S-7L has various modes and is configured using the S and T buttons.

Button
S Set button: Change / confirm a setting or set a switching point
T Toggle button: Select a function

The selected settings and signal condition are indicated by LEDs.

<table>
<thead>
<tr>
<th>LED</th>
<th>Colour</th>
<th>Use/Description</th>
</tr>
</thead>
</table>
| BA | Green | Power supply indicator
On: ready (run mode)
Flashing: setting mode is active |
| ZA | Red | Status indicator
Function activated/not activated, or confirmation signal |
| Q₁ | Yellow| Q₁ input/output |
| Q₂ | Yellow| Q₂ input/output |
| H | Green | Q₁ trigger input or Q₁ enable input function active |
| OK | Green | Good target (object detected and in measuring range) |
| T | Green | Pulse stretching function is active |
| Z | Green | Q₁ automatic centre or Q₁ automatic zero function is active |

The table of functions on page 28 explains the further significance of the LEDs: Q₁, Q₂, H, OK, T and Z

General use

The following four steps are used to configure the SOEL-RTD-Q50-PP-S-7L sensor:

1. Activate setting mode
Press the S and T buttons simultaneously for 3 seconds

After this period, the power supply indicator BA flashes
⇒ set SOEL-RTD-Q50-PP-S-7L, see Illustr. 9. The LEDs show the status of function no. 1 (page 28)

When all the LEDs start immediately flashing
⇒ Unlock SOEL-RTD-Q50-PP-S-7L, see paragraph “Unlocking keys” on page 34

2. Select functions (see page 28)
Press the T button to select the next function in the function table.
The function number is indicated by a clear LED pattern and the function status is indicated by the status indicator ZA (LED on = active, LED off = not active).

The sensor only switches to the next function when the T button is released.
If no change occurs:
⇒ Press T button for longer

The first function follows the last available function.

⇒ If the wrong function is selected by mistake, it is not possible to jump directly back to the previous function number.

⇒ Press the T button several times until the required function reappears.
⇒ Or deactivate setting mode (see point 4) and repeat procedure from step 1.

3. Setting the function status
Press the S button to alter the status of a particular function. The status indicator alters according to the table of functions. Settings are immediately effective but must still be saved as described in point 4.

⇒ Should the status indicator not alter or not light up whilst S is pressed

⇒ Check the position of the SOEL-RTD-Q50-PP-S-7L sensor in relation to the measuring range and adapt if necessary

To reset the setting, press the S button once again (is not valid when transferring measured value as switching point!)

4. Deactivate setting mode
First press the T button and then simultaneously press the S button. All settings are then saved. Once the S button is released, the sensor is in run mode. The BA power supply indicator is permanently alight.

⇒ Should the power supply fail during the setting procedure, all settings are lost.
Settings

The SOEL-RTD-Q50-PP-S-7L sensor can be configured as follows with functions 1 to 24 in setting mode (teach-in).

Button

- **S** Button: Change / confirm a setting or set a switching point
- **T** Toggle button: Select a function

Functions

<table>
<thead>
<tr>
<th>No.</th>
<th>LED pattern</th>
<th>Description</th>
<th>“ZA” status indicator</th>
<th>Factory setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Q₁■□Q₂□□OK T □□□Z</td>
<td>Select Q₁ output mode.</td>
<td>On = Q₁ is a output Off = Q₁ is not a output</td>
<td>On</td>
</tr>
<tr>
<td>2</td>
<td>Q₁□□Q₂□□OK T □□□Z</td>
<td>Set of current meas. value as 1st switching point of Q₁ output.</td>
<td>On* = Measured value valid Off* = Measured value invalid</td>
<td>Half measuring range</td>
</tr>
<tr>
<td>3</td>
<td>Q₁□□Q₂□□OK T □□□Z</td>
<td>Scanning zone: Set of current meas. value as 2nd switching point of Q₁ output. Q₁ must be signal output (see function no 1).</td>
<td>On = Measured value valid Off = Measured value invalid</td>
<td>Off</td>
</tr>
<tr>
<td>4</td>
<td>Q₁■□Q₂□□OK T □□□Z</td>
<td>N.C./N.O. change-over of switching functions for Q₁.</td>
<td>On = N.C. Off = N.O.</td>
<td>N.O.</td>
</tr>
<tr>
<td>5</td>
<td>Q₂□□Q₂□□OK T □□□Z</td>
<td>Q₂ output mode.</td>
<td>On = Q₂ is a output Off = Q₂ displays good target</td>
<td>Off</td>
</tr>
<tr>
<td>6</td>
<td>Q₂□□Q₂□□OK T □□□Z</td>
<td>Set of current meas. value as 1st switching point of Q₂ signal output. Q₂ must be output (see function no 5)</td>
<td>On* = Measured value valid Off* = Measured value invalid</td>
<td>Good Target</td>
</tr>
<tr>
<td>7</td>
<td>Q₂□□Q₂□□OK T □□□Z</td>
<td>Scanning zone: Set of current meas. value as 2nd switching point of Q₂ output. Q₂ must be output (see function no 5).</td>
<td>On = Measured value valid Off = Measured value invalid</td>
<td>Off</td>
</tr>
<tr>
<td>8</td>
<td>Q₂■□Q₂□□OK T □□□Z</td>
<td>N.C./N.O. change-over of switching functions for Q₂.</td>
<td>On = N.C. Off = N.O.</td>
<td>N.O.</td>
</tr>
<tr>
<td>9</td>
<td>Q₁■□Q₂□□OK T □□□Z</td>
<td>Pulse stretching of Q₁ and Q₂ by 50 ms.</td>
<td>On = Pulse stretching on Off = Pulse stretching off</td>
<td>Off</td>
</tr>
<tr>
<td>10</td>
<td>Q₂□□Q₂□□OK T □□□Z</td>
<td>Q₂ output shows status “good target”. Switching signal can be inverted with function no 8.</td>
<td>On = Object within... Off = Object outside... ...measuring range</td>
<td>Off</td>
</tr>
</tbody>
</table>

* as long as the S button is pressed
<table>
<thead>
<tr>
<th>No.</th>
<th>LED pattern</th>
<th>Description</th>
<th>“ZA” status indicator</th>
<th>Factory setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>Q₁ H T Z Q₂ H T Z</td>
<td>Q₁ trigger input mode: With rising edge on Q₁, measured value is held until the next trigger occurs.</td>
<td>On = Q₁ is a trigger input Off = Q₁ is not a trigger input</td>
<td>Off</td>
</tr>
<tr>
<td>12</td>
<td>Q₁ H T Z Q₂ H T Z</td>
<td>Q₁ enable input mode: Used to switch laser beam on and off. Laser beam is on when Q₁ = +Us. If Q₁ = - Us, the laser beam is switched off. Last measured value remains. When reactivated, the response time is prolonged according to the set mean value.</td>
<td>On = active Off = not active</td>
<td>Off</td>
</tr>
<tr>
<td>13</td>
<td>Q₁ H T Z Q₂ H T Z</td>
<td>Switches off averaging: The first measured value is taken into account (page 35).</td>
<td>On = Averaging off</td>
<td>On</td>
</tr>
<tr>
<td>14</td>
<td>Q₁ H T Z Q₂ H T Z</td>
<td>Switches on 4 ms averaging: the first 10 meas. values are taken into account (page 35).</td>
<td>On = active Off = not active</td>
<td>Off</td>
</tr>
<tr>
<td>15</td>
<td>Q₁ H T Z Q₂ H T Z</td>
<td>Switches on 40 ms averaging: all (max. 100) meas. values are taken into account (page 35).</td>
<td>On = active Off = not active</td>
<td>Off</td>
</tr>
<tr>
<td>16</td>
<td>Q₁ H T Z Q₂ H T Z</td>
<td>Set analogue output 0% (4 mA): When S button is activated, the current meas. value corresponds with 0% value of the analogue output.</td>
<td>On* = Object within... Off* = Object outside... measuring range</td>
<td>0% = 4 mA = end of meas. range</td>
</tr>
<tr>
<td>17</td>
<td>Q₁ H T Z Q₂ H T Z</td>
<td>Set analogue output 100% (20 mA): When S button is activated, the current meas. value corresponds with 100% value of the analogue output.</td>
<td>On* = Object within... Off* = Object outside... measuring range</td>
<td>100% = 20 mA = start of meas. range</td>
</tr>
<tr>
<td>18</td>
<td>Q₁ H T Z Q₂ H T Z</td>
<td>Q₁ automatic zero mode: For characteristic curve displacement. If Q₁ = +Us, the current measuring signal is set to the analogue value 0% = 4 mA. The incline of the characteristic curve is maintained. If exceeded, the characteristic curve ends at the start or end of the measuring range.</td>
<td>On = Automatic zero active Off = Automatic zero not active</td>
<td>Not active</td>
</tr>
<tr>
<td>19</td>
<td>Q₁ H T Z Q₂ H T Z</td>
<td>Q₁ automatic centre mode: displacement of centre of characteristic curve. If Q₁ = +Us, the current measuring signal is set to the analogue value 50% = 12 mA. The incline of the characteristic curve is maintained. If exceeded, the characteristic curve ends at the start or end of the measuring range.</td>
<td>On = Automatic centre active Off = Automatic centre not active</td>
<td>Not active</td>
</tr>
</tbody>
</table>

* as long as the S button is pressed
<table>
<thead>
<tr>
<th>No.</th>
<th>LED pattern</th>
<th>Description</th>
<th>“ZA” status indicator</th>
<th>Factory setting</th>
</tr>
</thead>
</table>
| 20 | ![Q1][Z][Q2][H][O][K][T][Z] | Q1: maximum hold mode: Provided
Q1 = +Uₘ, the max. recorded measured value is stored.
If Q1 = -Uₘ, the determined value is transmitted at the analogue output. A minimum hold can be set by inverting the analogue characteristic curve (analogue 100% point < analogue 0 % point). | On = Maximum hold active
Off = Maximum hold not active | Not active |
| 21 | ![Q1][Z][Q2][H][O][K][T][Z] | Q1: difference hold mode: Provided Q1 = +Uₘ, the difference between the measured values is saved. When Q1 = -Uₘ, the determined value is transmitted at the analogue output. | On = Difference hold active
Off = Difference hold not active | Not active |
| 22 | ![Q1][Z][Q2][H][O][K][T][Z] | Activate factory settings:
When the S button is pressed, the factory setting is activated. | ZA lights up as long as the S button is pressed | Not active |
| 23 | ![Q1][Z][Q2][H][O][K][T][Z] | Locking keys:
If function is activated locking becomes active once the setting mode has been quit.
Cancel locking with RESET or the unlocking function (see “Unlocking keys”) | On = Locking is active
Off = Locking is not active | Not active |
| 24 | ![Q1][Z][Q2][H][O][K][T][Z] | Meas. value hold mode:
If no object is in the measuring range (good target = off), the last measured value is held at the analogue output. | On = Meas. value hold is active
Off = Meas. value hold is not active | Not active |

Reset

When switching on the sensor (power on), keep the S button pressed (approx. 10 seconds) until the LED lights stop flashing and are permanently on. The BA power supply indicator is green. When the S button is released, a reset is carried out which returns the SOEL-RTD-Q50-PP-S-7L to delivery status where factory settings are active.
(See table of functions page 28-30).

Unlocking keys

When switching on the sensor (power on), keep the T button pressed (approx. 10 seconds) until the LED lights stop flashing and are permanently on. The ZA status indicator is red. When the T button is released, the setting mode is unlocked.
Averaging

The measuring result (output signal) is smoothed by averaging. The measured values are read continuously into a memory and the arithmetical mean is formed. Functions 14 and 15 (page 29) determine the number of measurements (10 or 100) to be used for averaging.

With a scanning rate of 0.4 ms per measurement, the response time lies between 0.4 ms (without averaging) and 40 ms.

Example of use: When measuring rough surfaces, it is possible to counter-balance fluctuations in measured values.

Response time

0.4 ms = measured value (no average)

4 ms = averaging with 10 measured values

40 ms = averaging with 100 measured values

Automatic zero mode

The output characteristic curve 4 – 20 mA is displaced with this function. When the automatic zero mode is activated and $Q_1 = +U_B$, the current measured value is equated with the output value of 0% = 4 mA. The incline of the characteristic curve is maintained and the minimum and maximum values of the characteristic curve are limited by the measuring range.

The distance to the object must be within the measuring range.
Automatic centre mode

The output characteristic curve 4 – 20 mA is displaced with this function. When the automatic centre function is activated and \(Q_1 = +U_B \), the current measured value is equated with the output value of 50% = 12 mA. The incline of the characteristic curve is maintained and the minimum and maximum values of the characteristic curve are limited by the measuring range.

The distance to the object must be within the measuring range.

![Illustration 13](15500146) ![Illustration 14](15500145)

Maximum hold mode

When maximum hold mode is activated and \(Q_1 = +U_B \), this function detects the maximum value of the measuring signal and stores it.

If \(Q_1 = -U_B \), the last maximum value is transmitted at the analogue output.

Example of use: determining the maximum value of a shaft

The minimum value can be determined by inverting the analogue output characteristic (see function no. 16 and 17).

![Illustration 15](15500153)

Illustration 13

- **100% (20 mA)**
- **50% (12 mA)**
- **0% (4 mA)**

Example:

1. **Q_1 = +U_B:** Sample. Collect measured values
2. **Q_1 = -U_B:** Display. Last maximum of analogue signal at analogue output
Difference hold mode

When the difference hold function is activated and $Q_1 = +U_B$, this function detects the difference between the minimum and maximum value of the measuring signal and stores it.

If $Q_1 = -U_B$, the last differential value is transmitted at the analogue output.

Example of use: Checking the contents of open containers or packages.

![Graph showing difference hold mode](image)

Illustr. 16
15500149

Measured value hold mode

When this function is activated, the last valid measured value is saved.

When no object is in the measuring range, the last valid measured value is transmitted at the analogue output. The current value is only displayed again when an object is within the measuring range (OK LED = on).

Example of use: Maintain position of tool during change-over of work piece when machining.

Behaviour of analogue output with and without measured value hold.

![Graph showing measured value hold mode](image)

Illustr. 17
15500275
Optical data (typ.)
- **Operating range SOEL-RTD-Q50-PP-S-7L**: 80 ... 300 mm
- **Measuring range SOEL-RTD-Q50-PP-S-7L**: 220 mm
- **Resolution**
 - SOEL-RTD-Q50-PP-S-7L: 0.3 mm
 - SOEL-RTD-Q50-PP-S-7L: 0.75 mm
- **Light used**: Pulsed laser light, red 650 nm, MTBF>50,000h
- **Ambient light**: See Illustr. 4 page 28
- **Laser protection class**: 1 (EN 60825/1)

Electrical data (typ.)
- **Operating voltage** U_B: 18-30 V DC
- **Power consumption (no load)**: ≤ 40 mA at 24 V DC
- **Signal outputs**
 - Q1 / Q2: (PNP, N.O. / N.C. selectable)
 - ≤ 100 mA
- **Switching frequency** Q1, Q2: ≤ 1 kHz
- **Response time** Q1, Q2, QA: 0.4 ms (when averaging = off) / 4 ms / 40 ms
- **Maximum capacitive load** Q1, Q2: < 100 nF
- **Pulse stretching** Q1, Q2: 50 ms (when activated)
- **Analogue output** QA: 4-20 mA
- **Temperature drift**: < 0.02% / °C
- **Protective circuits**: Reverse battery protection, short circuit protection
- **VDE protection class**: *5
- **Power on delay**: ≤ 300 ms

Mechanical data
- **Housing material**: ABS, shock-resistant
- **Front screen**: PMMA
- **Protection**: IP 67
- **Ambient temperature range**: -10 to +60 °C
- **Storage temperature range**: -20 to +80 °C
- **Connection**: M12 connector, 8-pin
- **Weight**: approx. 43 g

*1 smallest, measurable difference
*2 at ambient temperature: +40 °C
*3 limit values
*4 recommended burden ≤ 500 Ohm (apparent ohmic resistance)
*5 rating 50V DC
*6 with attached connector
Order information

<table>
<thead>
<tr>
<th>Part no.</th>
<th>Sensor type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>537823</td>
<td>SOEL-RTD-Q50-PP-S-7L</td>
<td>Distance sensor, 80 to 300 mm, Resolution 0.3 mm 2 x PNP, N.O/N.C., 4 to 20 mA, M12 8-pin connector, *</td>
</tr>
</tbody>
</table>

Accessories (not included in standard delivery)

<table>
<thead>
<tr>
<th>Part no.</th>
<th>Accessory</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>525618</td>
<td>SIM-M12-8GD-5-PU</td>
<td>Connection cable M12, 8-pin, 5 m in length, straight, PUR</td>
</tr>
<tr>
<td>525616</td>
<td>SIM-M12-8GD-2-PU</td>
<td>Connection cable M12, 8-pin, 2 m in length, straight, PUR</td>
</tr>
<tr>
<td>537786</td>
<td>SOEZ-HW-Q50</td>
<td>Recommended mounting bracket</td>
</tr>
</tbody>
</table>
Table des matières

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Légende des symboles</td>
<td>38</td>
</tr>
<tr>
<td>Consignes de sécurité</td>
<td>38</td>
</tr>
<tr>
<td>Emploi</td>
<td>39</td>
</tr>
<tr>
<td>Caractéristiques</td>
<td>39</td>
</tr>
<tr>
<td>Principe de fonctionnement</td>
<td>39</td>
</tr>
<tr>
<td>Montage</td>
<td>40</td>
</tr>
<tr>
<td>Commande</td>
<td>42</td>
</tr>
<tr>
<td>Commande générale</td>
<td>42</td>
</tr>
<tr>
<td>Règlage</td>
<td>44</td>
</tr>
<tr>
<td>Fonctions</td>
<td>44</td>
</tr>
<tr>
<td>Reset - Initialisation</td>
<td>46</td>
</tr>
<tr>
<td>Déverrouillage des touches</td>
<td>46</td>
</tr>
<tr>
<td>Recherche de la moyenne</td>
<td>47</td>
</tr>
<tr>
<td>Mode Auto Zéro</td>
<td>47</td>
</tr>
<tr>
<td>Mode Auto Center</td>
<td>48</td>
</tr>
<tr>
<td>Mode Maintien Maximum</td>
<td>48</td>
</tr>
<tr>
<td>Mode Maintien Différence</td>
<td>49</td>
</tr>
<tr>
<td>Maintien Valeur de mesure</td>
<td>49</td>
</tr>
<tr>
<td>Données optiques (typ.)</td>
<td>50</td>
</tr>
<tr>
<td>Données électriques (typ.)</td>
<td>50</td>
</tr>
<tr>
<td>Données mécaniques</td>
<td>50</td>
</tr>
<tr>
<td>Références de commande</td>
<td>51</td>
</tr>
</tbody>
</table>
Légende des symboles

Attention
Ce symbole est apposé aux textes qui doivent absolument être respectés. Le non-respect peut entraîner des dommages corporels ou matériels.

Attention laser
Ce symbole est apposé aux textes qui mettent en garde contre les dangers du laser.

Information
Ce symbole est apposé aux textes qui contiennent des informations utiles.

Consignes de sécurité

Avant la mise en marche du SOEL-RTD-Q50-PP-S-7L, lire, comprendre et respecter impérativement ce manuel d'instruction et plus particulièrement ces consignes de sécurité.

Le raccordement du SOEL-RTD-Q50-PP-S-7L ne doit être fait que par des personnes compétentes.

Des modifications sur l'appareil ne sont pas permises !

Le SOEL-RTD-Q50-PP-S-7L, n'est pas une pièce de sécurité au sens des directives EU relatives aux machines, et ne peut en aucun cas être utilisé dans des applications où la sécurité des personnes dépend d'un appareil.

Le SOEL-RTD-Q50-PP-S-7L correspond à la classe de protection de laser 1 selon IEC 60825-1. Les exigences techniques satisfont à la norme EN 60947-5-5, édition 2000.
Emploi

⚠️ Le SOEL-RTD-Q50-PP-S-7L n’est pas destiné à garantir la sécurité des personnes travaillant sur des machines et des applications techniques.

Il s’agit d’un capteur optique qui mesure, sans contact, des distances.

Caractéristiques

- Champ de travail SOEL-RTD-Q50-PP-S-7L : 80 - 300 mm
- 2 sorties de commutation
- Sortie analogique 4-20 mA
- 4 affichages de fonctions
- Boîtier compact 50 x 50 x 17 mm
- Haute résolution (0,3 mm)
- Nombreuses fonctions

Principe de fonctionnement

Le SOEL-RTD-Q50-PP-S-7L mesure selon le principe de la triangulation on peut ainsi, grâce à la position du spot sur le détecteur, déterminer la distance existant entre un objet et le capteur.

Champ de travail (réglage usine)

![Diagramme du champ de travail](image)

Fig. 3
15500271
Géométrie du spot

![Géométrie du spot](image)

<table>
<thead>
<tr>
<th>SOEL-RTD-Q50-PP-S-7L</th>
</tr>
</thead>
<tbody>
<tr>
<td>A 80</td>
</tr>
<tr>
<td>B 300</td>
</tr>
<tr>
<td>C 1,5 x 3,5</td>
</tr>
<tr>
<td>D 2 x 4,5</td>
</tr>
<tr>
<td>E 32,5</td>
</tr>
</tbody>
</table>

Toutes les dimensions en mm

Montage

⚠️ Afin d’optimiser les mesures, protéger le SOEL-RTD-Q50-PP-S-7L des secousses ou vibrations.
Protéger par exemple le connecteur de tout glissement au moyen d’un serre-câble.

Préparation

Tourner le capteur de telle façon (voir schéma 1, page 3) que la fiche soit libre et que le connecteur puisse être monté sans être plié.

Placement

Fixer le SOEL-RTD-Q50-PP-S-7L sur l’équerre, par ex. type SOEZ-HW-Q50 (non fournie sans commande) ou sur l’installation lui étant destinée. N’utiliser à cet effet que les trous prévus pour y fixer les vis (voir dessin coté).

Pour les objets défilant ou striés, positionner le capteur comme sur les schémas 5 et 6.

Il est nécessaire d’incliner le SOEL-RTD-Q50-PP-S-7L de 5° pour détecter des objets très réfléchissants (Fig. 7).

Le montage du SOEL-RTD-Q50-PP-S-7L est terminé.
Installation électrique

Attention : Les broches 1 et 5 ne doivent pas être raccordés à l'alimentation sous peine de détruire le capteur.

Enfoncer la prise ronde du connecteur sur la fiche du SOEL-RTD-Q50-PP-S-7L et la visser à la main.

<table>
<thead>
<tr>
<th>Raccordement</th>
<th>Couleur</th>
<th>Utilisation</th>
<th>Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (WH)</td>
<td>Blanc</td>
<td>+ Uₘ</td>
<td></td>
</tr>
<tr>
<td>2 (BN)</td>
<td>Brun</td>
<td>+ Uₘ</td>
<td></td>
</tr>
<tr>
<td>3 (GN)</td>
<td>Vert</td>
<td>En tant que sortie de commutation Q₁, ou entrée avec fonctions d'entrées en option (voir "Réglage" en page 52)</td>
<td>Q₁</td>
</tr>
<tr>
<td>4 (YE)</td>
<td>Jaune</td>
<td>En sortie de commutation Q₂ ou fonction de commutation Bonne cible (objet reconnaissable dans le champ de travail)</td>
<td>Q₂ ou Bonne cible</td>
</tr>
<tr>
<td>5 (GY)</td>
<td>Gris</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6 (PK)</td>
<td>Rose</td>
<td>QA + Valeur analogique mesurée</td>
<td></td>
</tr>
<tr>
<td>7 (BU)</td>
<td>Bleu</td>
<td>- Uₘ</td>
<td></td>
</tr>
<tr>
<td>8 (RD)</td>
<td>Rouge</td>
<td>QA - masse analogique</td>
<td></td>
</tr>
</tbody>
</table>

Après avoir branché la tension, le SOEL-RTD-Q50-PP-S-7L est prêt à fonctionner après un retard à l'enclenchement (≤ 300 ms).
Commande

Panneau de commande

Touche

- **S**: Touche Set (Réglage) : Changer / confirmer le réglage ou régler le point de commutation
- **T**: Touche Toggle (Bascule) : Sélectionner la fonction

Le marquage du réglage ou de l’état de sortie choisi se fait grâce aux LED.

<table>
<thead>
<tr>
<th>LED</th>
<th>Couleur</th>
<th>Utilisation / Désignation</th>
</tr>
</thead>
<tbody>
<tr>
<td>BA</td>
<td>Vert</td>
<td>Témoin de fonctionnement</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Allumée : prêt à fonctionner (mode Run)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Clignote : mode de réglage (mode Set) est activé</td>
</tr>
<tr>
<td>ZA</td>
<td>Rouge</td>
<td>Témoin d’état</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fonction activée / pas activée, ou signal de confirmation</td>
</tr>
<tr>
<td>Q1</td>
<td>Jaune</td>
<td>Entrée / Sortie Q1</td>
</tr>
<tr>
<td>Q2</td>
<td>Jaune</td>
<td>Entrée / Sortie Q2</td>
</tr>
<tr>
<td>H</td>
<td>Vert</td>
<td>Fonction Q1 Entrée Décidencer ou Q1 Entrée Valider active</td>
</tr>
<tr>
<td>OK</td>
<td>Vert</td>
<td>Bonne cible (objet détecté et dans le champ de travail)</td>
</tr>
<tr>
<td>T</td>
<td>Vert</td>
<td>La fonction Prolongation de l’impulsion est active</td>
</tr>
<tr>
<td>Z</td>
<td>Vert</td>
<td>La fonction Q1 Auto Center ou l’Auto Zéro est active</td>
</tr>
</tbody>
</table>

Le tableau H des fonctions - page 44 - donne la définition des LED Q1, Q2, H, OK, T et Z.

Commande générale

Pour la configuration du SOEL-RTD-Q50-PP-S-7L, les quatre étapes suivantes sont nécessaires:

1. **Activer le mode réglage**
 - Appuyer simultanément sur les touches S et T pendant 3 secondes.
 - Si, après le temps écoulé, l’affichage BA clignote ⇒ Régler le SOEL-RTD-Q50-PP-S-7L, voir Schéma 9. Les LED montrent l’état de la fonction n° 1, page 44.
 - Si, immédiatement, toutes les LED clignotent ⇒ Déverrouiller le SOEL-RTD-Q50-PP-S-7L, voir paragraphe 11 „Déverrouillage des touches“ page 44.

2. **Choix des fonctions** (voir page 44)
 - En appuyant sur la touche T, on sélectionne la fonction suivante du tableau.
 - Le numéro de la fonction sera représenté de manière significative par les LED, l’état de la fonction par l’affichage ZA (LED allumée = active, LED éteinte = inactive).

 ➔ On passe seulement à la prochaine fonction quand on relâche la touche T.
Si pas de changement :
⇒ Appuyer plus longtemps sur la touche T

Après la dernière fonction, la première se représente.

⇒ Si par mégarde l'utilisateur a appuyé sur une mauvaise fonction, il n'est pas possible de retourner directement sur la dernière fonction réglée.

⇒ Appuyer plusieurs fois sur la touche T jusqu'à ce que la fonction souhaitée réapparaisse.
⇒ Ou désactiver le mode réglage (voir 4.) et recommencer la procédure à partir du point 1.

3. Régler l'état des fonctions
En appuyant sur la touche S, on change le statut des fonctions. Selon le tableau des fonctions, l'affichage état change. Les réglages entrent aussitôt en fonction ; il faut juste les sauvegarder, comme stipulé sous 4.

⇒ Si l'affichage état ne s'affiche ou ne s'allume pas, quand on appuie sur S

⇒ Contrôler la position du SOEL-RTD-Q50-PP-S-7L par rapport au champ de mesure et rectifier le cas échéant

Pour annuler le réglage, appuyer encore une fois sur la touche S (ne s'applique pas quand on adopte une valeur de mesure comme point de commutation !).

4. Désactiver le mode réglage
Appuyer d'abord sur la touche T et ensuite, simultanément, sur la touche S, après quoi, tous les réglages ont été sauvegardés. Après avoir relâché la touche S, le capteur est en mode Run. L'affichage BA est de nouveau allumé sans clignoter.

⇒ En cas de coupure de courant pendant la procédure de réglage, tous les réglages faits jusqu'à ce moment sont perdus.
Réglage

Le SOEL-RTD-Q50-PP-S-7L peut être configuré en mode Réglage (Teach-in) avec les fonctions 1 à 24.

Touche

S Touche Set (Réglage) : Changer / confirmer le réglage ou régler le point de commutation

T Touche Toggle (Bascule) : Sélectionner la fonction

Fonctions

<table>
<thead>
<tr>
<th>N°</th>
<th>Échantillon LED</th>
<th>Désignation</th>
<th>Témoin d’état „ZA“</th>
<th>Réglage usine</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Q₁ H ☐ ☐ Q₂ H ☐ ☐ OK T ☐ ☐ Z</td>
<td>Sélectionner mode de commutation Q₁</td>
<td>Allumé = Q₁ est sortie de commut. Eteint = Q₁ pas sortie de commut.</td>
<td>Allumé</td>
</tr>
<tr>
<td>2</td>
<td>Q₁ H ☐ ☐ Q₂ H ☐ ☐ OK T ☐ ☐ Z</td>
<td>La mesure actuelle est enregistrée en tant que 1er point de commutation de la sortie de commutation Q₁</td>
<td>Allumé = valeur mesurée valable Eteint = valeur mesurée non valable</td>
<td>Moitié de la zone de détection</td>
</tr>
<tr>
<td>3</td>
<td>Q₁ H ☐ ☐ Q₂ H ☐ ☐ OK T ☐ ☐ Z</td>
<td>Fenêtre de commutation : mesure enregistrée comme 2nd point de commut. de la sortie Q₁. Q₁ doit être sortie de commut. (voir fonction n° 1)</td>
<td>Allumé = valeur mesurée valable Eteint = valeur mesurée non valable</td>
<td>Eteint</td>
</tr>
<tr>
<td>4</td>
<td>Q₁ H ☐ ☐ Q₂ H ☐ ☐ OK T ☐ ☐ Z</td>
<td>N.C./N.O. – Changement des fonctions de commutation pour Q₁</td>
<td>Allumé = Ouverture Eteint = Fermeture</td>
<td>Fermé</td>
</tr>
<tr>
<td>5</td>
<td>Q₁ H ☐ ☐ Q₂ H ☐ ☐ OK T ☐ ☐ Z</td>
<td>Mode Sortie de commutation Q₂</td>
<td>Allumé = Q₂ est sortie de commut. Eteint = Q₂ signale bonne cible.</td>
<td>Eteint</td>
</tr>
<tr>
<td>6</td>
<td>Q₁ H ☐ ☐ Q₂ H ☐ ☐ OK T ☐ ☐ Z</td>
<td>La mesure actuelle est enregistrée en tant que 1er point de commutation de la sortie de commutation Q₂. Q₂ doit être sortie de commut. (voir fonction n° 5)</td>
<td>Allumé = valeur mesurée valable Eteint = valeur mesurée non valable</td>
<td>Bonne cible</td>
</tr>
<tr>
<td>7</td>
<td>Q₁ H ☐ ☐ Q₂ H ☐ ☐ OK T ☐ ☐ Z</td>
<td>Fenêtre de commutation : mesure enregistrée comme 2nd point de commut. de la sortie Q₂. Q₂ doit être sortie de commut. (voir fonction n° 5)</td>
<td>Allumé = valeur mesurée valable Eteint = valeur mesurée non valable</td>
<td>Eteint</td>
</tr>
<tr>
<td>8</td>
<td>Q₁ H ☐ ☐ Q₂ H ☐ ☐ OK T ☐ ☐ Z</td>
<td>N.C./N.O. changement des fonctions de commutation pour Q₂.</td>
<td>Allumé = Ouverture Eteint = Fermeture</td>
<td>Fermé</td>
</tr>
<tr>
<td>9</td>
<td>Q₁ H ☐ ☐ Q₂ H ☐ ☐ OK T ☐ ☐ Z</td>
<td>Prolongation de l’impulsion de Q₁ et Q₂ de 50 ms.</td>
<td>Allumé = prolongation déclenchée Eteint = prolongation coupée</td>
<td>Eteint</td>
</tr>
<tr>
<td>10</td>
<td>Q₁ H ☐ ☐ Q₂ H ☐ ☐ OK T ☐ ☐ Z</td>
<td>Sortie de commutation Q₂ montre l’état „Bonne cible“. Le signal de commutation peut s’inverser à l’aide du fonction n° 8</td>
<td>Allumé = objet à l’intérieur... Eteint = objet à l’extérieur...</td>
<td>Allumé</td>
</tr>
</tbody>
</table>

* aussi longtemps qu’on appuie sur la touche S
<table>
<thead>
<tr>
<th>N°</th>
<th>Échantillon LED</th>
<th>Désignation</th>
<th>Témoin d’état „ZA“</th>
<th>Réglage usine</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>Q₁ H T</td>
<td>Mode Q₁ = Entrée Décélémentation: Avec flanc montant en Q₁, la valeur de mesure est gardée jusqu’au prochain événement Décélémentation</td>
<td>Allumé = Q₁ est une entrée Décellement
Eteint = Q₁ n’est pas une entrée Décellement</td>
<td>Eteint</td>
</tr>
<tr>
<td>12</td>
<td>Q₁ H T</td>
<td>Mode Q₁ = Entrée Validation: Sert à allumer et/ou éteindre le faisceau laser. Le faisceau laser est allumé aussi longtemps que Q₁ = +Uᵦ. Il est éteint quand Q₁ = -Uᵦ. La dernière valeur est affichée. Lors d’une prochaine activation, le temps de réponse augmente selon la valeur moyenne réglée.</td>
<td>Allumé = activé
Eteint = désactivé</td>
<td>Eteint</td>
</tr>
<tr>
<td>13</td>
<td>Q₁ H T</td>
<td>Désactiver la recherche de la moyenne: La première mesure est prise en compte (page 55)</td>
<td>Allumé = Recherche de la moyenne coupée</td>
<td>Allumé</td>
</tr>
<tr>
<td>14</td>
<td>Q₁ H T</td>
<td>Brancher la recherche de la moyenne pendant 4 ms: Les 10 premières mesures sont prises en compte (page 55)</td>
<td>Allumé = activé
Eteint = désactivé</td>
<td>Eteint</td>
</tr>
<tr>
<td>15</td>
<td>Q₁ H T</td>
<td>Brancher la recherche de la moyenne pendant 40 ms: Toutes les mesures (maxi 100) sont prises en compte (page 55)</td>
<td>Allumé = activé
Eteint = désactivé</td>
<td>Eteint</td>
</tr>
<tr>
<td>16</td>
<td>Q₁ H T</td>
<td>Régler sortie analogique 0% (4mA): Après avoir actionné la touche S, la valeur actuelle de mesure correspond à 0% de la valeur de la sortie analogique</td>
<td>Allumé = objet à l’intérieur...
Eteint = objet à l’extérieur...</td>
<td>0% = 4 mA = fin du champ de mesure</td>
</tr>
<tr>
<td>17</td>
<td>Q₁ H T</td>
<td>Régler sortie analogique 100% (20mA): Après avoir actionné la touche S, la valeur actuelle de mesure correspond à 100% de la valeur de la sortie analogique</td>
<td>Allumé = objet à l’intérieur...
Eteint = objet à l’extérieur...</td>
<td>100% = 20 mA = début du champ de mesure</td>
</tr>
<tr>
<td>18</td>
<td>Q₁ H T</td>
<td>Mode Auto Zéro Q₁: Provoque déplacement de la caractéristique. Si +Ub est présente en Q₁, la valeur actuelle du signal est réglée sur la valeur analogique 0% = 4 mA. La croissance de la caractéristique reste identique. Si dépassement, elle finit sur la fin ou le début du champ de mesure.</td>
<td>Allumé = Auto Zéro activée
Eteint = Auto Zéro désactivée</td>
<td>Déactivé</td>
</tr>
<tr>
<td>19</td>
<td>Q₁ H T</td>
<td>Mode Auto Zero Q₁: déplacement de la ligne de reconnaissance. Si +Us est affiché sur Q₁, la valeur actuelle du signal est réglée sur la valeur analogique 50% = 12 mA. La croissance de la ligne de reconnaissance reste identique. Si dépassement, elle finit sur la fin ou le début du champ de mesure.</td>
<td>Allumé = Auto Center activée
Eteint = Auto Center désactivée</td>
<td>Déactivé</td>
</tr>
</tbody>
</table>

* aussi longtemps qu’on appuie sur la touche S
Tableau des fonctions

<table>
<thead>
<tr>
<th>N°</th>
<th>Echantillon LED</th>
<th>Désignation</th>
<th>Témoin d’état „ZA“</th>
<th>Réglage usine</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>Q₁ H T</td>
<td>Mode Maintien Maximum Q₁: aussi longtemps que +Uₜ est présente en Q₁, la plus grande valeur mesurée sera sauvegardée. Quand -Uₜ apparaît sur Q₁, la valeur déterminée est émise à la sortie analogique. En inversant la caractéristique, on peut régler un Maintien Minimum (point analogique 100% < point analogique 0%)</td>
<td>Allumé = Maintien Maximum actif</td>
<td>inactif</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Eteint = Maintien Maximum inactif</td>
<td></td>
</tr>
</tbody>
</table>

| 21 | Q₁ H T | Mode Maintien Différence Q₁: aussi longtemps que +Uₜ est présente en Q₁, la différence des valeurs mesurées sera sauvegardée. Quand -Uₜ apparaît en Q₁, la valeur déterminée est émise à la sortie analogique. | Allumé = Maintien Différence activé | inactif |
| | | | Eteint = Maintien Différence désactivé | |

| 22 | Q₁ H T | Activer les réglages usine: En appuyant sur la touche S, on active le réglage usine. | ZA est allumé aussi longtemps qu’on appuie sur la touche S | inactif |

| 23 | Q₁ H T | Verrouiller les touches: Si ce fonction est activée, le verrouillage est actif après avoir quitter le mode réglage. On supprime le verrouillage avec RESET (Initialisation) ou par la fonction „Déverrouillage des touches,” | Allumé = verrouillage est actif | inactif |
| | | | Eteint = verrouillage est inactif | |

| 24 | Q₁ H T | Mode Maintien Valeur de mesure: si aucun objet dans champ de mesure (Bonne cible = éteint), dernière valeur est conservée à sortie analogique. | Allumé = Maintien Valeur de mesure est activé | inactif |
| | | | Eteint = Maintien Valeur de mesure est inactif | |

Reset - Initialisation

Pendant le processus de mise en marche (Power on), appuyer sur la touche S (env. 10 secondes) jusqu’à ce que le clignotement des LED cesse et qu’elles soient allumées. Ce faisant, le témoin BA reste constamment allumé en vert. Après avoir relâché la touche S, l’initialisation a été effectuée, le SOEL-RTD-Q50-PP-S-7L se trouve maintenant dans l’état dans lequel il a été livré et les réglages usine sont de nouveau actifs (voir tableau de fonctions pages 44-46).

Déverrouillage des touches

Pendant le processus de mise en marche (Power on), appuyer sur la touche T (env. 10 secondes) jusqu’à ce que le clignotement des LED cesse et qu’elles soient allumées. Ce faisant, le témoin ZA reste constamment allumé en rouge. Après avoir relâché la touche T, le mode réglage est déverrouillé.
Recherche de la moyenne

Le Résultat de mesure (signal de sortie) est aplani par la moyenne. Pour cela, les valeurs mesurées sont lues et stockées de manière continue sur une mémoire avec laquelle est constituée la moyenne arithmétique de ces données. Les fonctions 14 et 15 (page 45) déterminent le nombre des mesures (10 ou 100) qui serviront à cette moyenne.

Grâce au taux de capture qui est de 0,4 ms par mesure, le temps de réponse est entre 0,4 ms (sans recherche de la moyenne) et 40 ms.

Application type : Lors de la détection d’une surface rugueuse et irrégulière, on peut ainsi aplanir les résultats variables de cette détection.

Temps de réponse

0,4 ms = 1 mesure (pas de moyenne)
4 ms = recherche moyenne de 10 mesures
40 ms = recherche moyenne de 100 mesures

Mode Auto Zéro

La caractéristique de la sortie 4 - 20 mA se déplace avec cette fonction. Si cette fonction Auto Zéro est activée et que +Us est appliquée en Q1, la valeur actuelle mesurée est prise égale à la valeur de sortie de 0% = 4 mA. La croissance de la caractéristique reste identique et les valeurs mini et maxi de la courbe sont limitées par le champ de mesure.

L’objet doit se trouver à l’intérieur du champ de mesure.
Mode Auto Center

La caractéristique de la sortie 4 - 20 mA se déplace avec cette fonction. Si cette fonction Auto Center est activée et que $+U_B$ est appliquée en Q_1, la valeur actuelle mesurée est prise égale à la valeur de sortie de 50% = 12 mA. La croissance de la caractéristique reste identique et les valeurs mini et maxi de la courbe sont limitées par le champ de mesure.

La distance de l'objet doit être contenue dans le champ de mesure.

Mode Maintien Maximum

Si la fonction Maintien Maximum est activée et que la tension $+U_B$ apparaît en Q_1, la valeur maximale du signal sera déterminée et sauvegardée avec cette fonction.
Si la tension $-U_B$ apparaît en Q_1, la dernière valeur maximale est émise à la sortie analogique.
Application type : déterminer la valeur maximale d'une vague.

Grâce à l'inversion de la ligne de reconnaissance (voir fonctions 16 et 17) on peut également déterminer le minimum.

![Diagrammes de fonctionnement](images)
Mode Maintien Différence

Si la fonction Hold Différence est activée et que la tension +Us apparaît en Q₁, on peut déterminer et sauvegarder la différence entre le signal maximum et minimum.
Si la tension -Us apparaît en Q₁, la dernière différence est émise à la sortie analogique.

Application type : contrôler le contenu de récipients ou de paquets.

Maintien Valeur de mesure

Si cette fonction est activée, la dernière valeur mesurée valide sera sauvegardée.
Tant qu’il n’y a aucun objet se trouvant dans le champ de mesure, la dernière valeur mesurée valide est émise à la sortie analogique. C’est seulement avec un nouvel objet dans le champ de mesure (OK LED = allumé) qu’on obtiendra une nouvelle mesure actuelle.

Application type : Garder sur une machine la position d’un outil, pendant qu’on change une pièce.

Schéma : comportement de la sortie analogique avec ou sans Hold Valeur de mesure
Données optiques (typ.)

Champ de travail SOEL-RTD-Q50-PP-S-7L
Champ de mesure SOEL-RTD-Q50-PP-S-7L
Résolution*1
Linéarité
Type de lumière
Diamètre du spot
Tolérance lumière extérieure
Classe de protection laser

Données optiques (typ.)

<table>
<thead>
<tr>
<th>Caractéristique</th>
<th>Valeur</th>
</tr>
</thead>
<tbody>
<tr>
<td>Champ de travail SOEL-RTD-Q50-PP-S-7L</td>
<td>80 ... 300 mm</td>
</tr>
<tr>
<td>Champ de mesure SOEL-RTD-Q50-PP-S-7L</td>
<td>220 mm</td>
</tr>
<tr>
<td>Résolution*1</td>
<td>0,3 mm</td>
</tr>
<tr>
<td>Linéarité</td>
<td>0,75 mm</td>
</tr>
<tr>
<td>Type de lumière</td>
<td>Lumière laser pulsée, rouge 650 nm, MTBF > 50.000 h *2</td>
</tr>
<tr>
<td>Diamètre du spot</td>
<td>voir Fig. 4, page 48</td>
</tr>
<tr>
<td>Tolérance lumière extérieure</td>
<td>Lumière constante 5000 lux selon normes EN 60947-5-2</td>
</tr>
<tr>
<td>Classe de protection laser</td>
<td>1 (EN 60825/1)</td>
</tr>
</tbody>
</table>

Données électriques (typ.)

Tension d'alimentation U_B
Consommation sans charge
Sorties de commutation
Courant de sortie Q_1, Q_2
Fréquence de commutation Q_1, Q_2
Temps de réponse Q_1, Q_2, Q_{OA}
Charge maxi Q_1, Q_2
Prolongation de l’impulsion Q_1, Q_2
Sortie analogique Q_{OA}
Dérive de température
Circuits protecteurs
Classe de protection VDE *5
Retard à l’enclenchement

Données électriques (typ.)

<table>
<thead>
<tr>
<th>Caractéristique</th>
<th>Valeur</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tension d'alimentation U_B</td>
<td>18-30 V DC *3</td>
</tr>
<tr>
<td>Consommation sans charge</td>
<td>≤ 40 mA pour 24 V DC</td>
</tr>
<tr>
<td>Sorties de commutation</td>
<td>Q_1/Q_2 (PNP, N.O. / N.C. configurable)</td>
</tr>
<tr>
<td>Courant de sortie Q_1, Q_2</td>
<td>≤ 100 mA</td>
</tr>
<tr>
<td>Fréquence de commutation Q_1, Q_2</td>
<td>≤ 1 kHz</td>
</tr>
<tr>
<td>Temps de réponse Q_1, Q_2, Q_{OA}</td>
<td>0,4 ms (quand formation moyenne = éteint) 4 ms / 40 ms</td>
</tr>
<tr>
<td>Charge maxi Q_1, Q_2</td>
<td>< 100 nF</td>
</tr>
<tr>
<td>Prolongation de l’impulsion Q_1, Q_2</td>
<td>50 ms (si activé)</td>
</tr>
<tr>
<td>Sortie analogique Q_{OA}</td>
<td>4-20 mA *4</td>
</tr>
<tr>
<td>Dérive de température</td>
<td>< 0,02% / °C</td>
</tr>
<tr>
<td>Circuits protecteurs</td>
<td>Protection contre les inversions de pôles, protection contre les courts-circuits</td>
</tr>
<tr>
<td>Classe de protection VDE *5</td>
<td></td>
</tr>
<tr>
<td>Retard à l’enclenchement</td>
<td>≤ 300 ms</td>
</tr>
</tbody>
</table>

Données mécaniques

Matériau du boîtier
Vitre avant
Degré de protection
Température ambiante
Température de stockage
Raccordement
Poids

Données mécaniques

<table>
<thead>
<tr>
<th>Caractéristique</th>
<th>Valeur</th>
</tr>
</thead>
<tbody>
<tr>
<td>Matériau du boîtier</td>
<td>ABS, résistant aux chocs</td>
</tr>
<tr>
<td>Vitre avant</td>
<td>PMMA</td>
</tr>
<tr>
<td>Degré de protection</td>
<td>IP 67 *6</td>
</tr>
<tr>
<td>Température ambiante</td>
<td>-10 ... +60 °C</td>
</tr>
<tr>
<td>Température de stockage</td>
<td>-20 ... +80 °C</td>
</tr>
<tr>
<td>Raccordement</td>
<td>Connecteur M12, 8 pôles</td>
</tr>
<tr>
<td>Poids</td>
<td>env. 43g</td>
</tr>
</tbody>
</table>

*1 la plus petite variation mesurable
*2 Avec température ambiante : + 40 °C
*3 Valeur limite
*4 Charge conseillée ≤ 500 Ohm
*5 Tension de mesure 50 V DC
*6 Avec connecteur attaché
Références de commande

<table>
<thead>
<tr>
<th>N° Article</th>
<th>Référence</th>
<th>Désignation</th>
</tr>
</thead>
<tbody>
<tr>
<td>537823</td>
<td>SOEL-RTD-Q50-PP-S-7L</td>
<td>Capteur de distance, 80 ... 300 mm, Résolution 0,3 mm</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2 x PNP, N.O./N.C, 4 ... 20 mA, Connecteur M12 8 pôles, *</td>
</tr>
</tbody>
</table>

* Le manuel d'instructions / montage est inclus dans la livraison (Nr. 068-13671)

Accessoires (non inclus)

<table>
<thead>
<tr>
<th>N° Article</th>
<th>Référence</th>
<th>Désignation</th>
</tr>
</thead>
<tbody>
<tr>
<td>525618</td>
<td>SIM-M12-8GD-5-PU</td>
<td>Câble de raccordement M12, 8 pôles, Longueur 5 m, droit, PUR</td>
</tr>
<tr>
<td>525616</td>
<td>SIM-M12-8GD-2-PU</td>
<td>Câble de raccordement M12, 8 pôles, Longueur 2 m, droit, PUR</td>
</tr>
<tr>
<td>537786</td>
<td>SOEZ-HW-Q50</td>
<td>Equerre de fixation conseillée</td>
</tr>
</tbody>
</table>

The reproduction, distribution and utilization of this document as well as the communication of its contents to others without express authorization is prohibited. Offenders will be held liable for the payment of damages. All rights reserved in the event of the grant of a patent, utility module or design.

Toute communication ou reproduction de ce document, sous quelque forme que ce soit, et toute exploitation ou communication de son contenu sont interdites, sauf autorisation écrite expresse. Tout manquement à cette règle est illicite et expose son auteur au versement de dommages et intérêts. Tous droits réservés pour le cas de la délivrance d’un brevet, d’un modèle d’utilité ou d’un modèle de présentation.

Deutschland
Festo AG & CO.,
Postfach
D-73726 Esslingen

Phone:
+49 / 711 / 347-0

Fax:
+49 / 711 / 347-2144

email:
service_international@festo.com

Internet:
http:// www.festo.com

Original: de
Version: 1606d