
Dexterous Manipulation Using Hierarchical
Reinforcement Learning

Stephan Schädle	 Institute	for	Artificial	Intelligence
Wolfgang Ertel	 University	of	Applied	Sciences
	 Ravensburg-Weingarten
	 Germany

	 schaedst@hs-weingarten.de
	 ertel@hsweingarten.de

2

Abstract.	On	a	novel	pneumatic	four-finger	gripper	with	three	degrees	
of	freedom	per	finger	we	apply	reinforcement	learning	to	learn	dexter-
ous	manipulation	of	objects.	In	order	to	reduce	the	search	space,	we	
implemented	hierarchical	learning	on	two	levels.	Low-level	learning	is	
used	for	basic	movement	primitives	like	grabbing,	lifting	or	rotation	of	
an	object	around	three	cartesian	axes,	whereas	in	high-level	learning	
we	use	the	already	learned	low-level	actions	to	find	a	policy	that	ena-
bles	the	gripper	to	move	a	target	point	on	the	surface	of	a	sphere	to	
the	top	position	in	a	few	seconds.	It	turns	out	that	Q-learning	with	a	
finite	state-	and	action	space	solves	the	learning	task	very	well.	
Additional	videos	are	available	at	[1].		

Fig. 1 FESTO	Learning	Gripper

Flexible	and	dexterous	manipulation	of	objects	is	getting	more	and	
more	important	for	industrial	applications.	Motivated	by	this	goal,	the	
FESTO	company	is	doing	research	on	pneumatic	gripper	technology.	
Among	others,	a	fourfinger	gripper	with	three	pneumatic	actors	per	
finger	has	been	developed.	The	gripper	shown	in	Fig.	1	is	inspired	by	
an	elephant’s	trunk	[2].	In	contrast	to	classical	pneumatic	cylinders,	
the	blue	pneumatic	actors	shown	in	Fig.	1	can	provide	soft	forces.	
The	gripper	comprises	four	crosswise-mounted	pneumatic	fingers	
and	has	twelve	degrees	of	freedom	leading	to	a	high-dimensional	
state	and	action	space.	The	skills	and	versatility	of	the	human	hand	
served	as	a	guidance	during	the	development	of	the	gripper.	

Possible	applications	of	the	gripper	are	the	classical	binpicking	task	
where	the	gripper	picks	a	detected	object	with	arbitrary	orientation	
from	a	bin,	grasps	it,	rotates	it	without	releasing	into	the	desired	ori-
entation	and	then	puts	it	to	the	desired	location	on	a	conveyor	belt.	
A	similar	application	is	the	placement	of	a	piece	of	fruit,	e.g.	an	apple,	
with	its	nicest-looking	side	on	top	into	a	fruit	box	pallet.	

As	a	demonstration	of	such	dexterous	skills,	our	goal	was	to	show	
that	the	new	pneumatic	gripper	is	able	to	learn	the	following	task:	
Initially,	a	sphere	lying	on	the	bottom	of	the	gripper	has	to	be	lifted	
and	manipulated,	i.e.	rotated,	until	a	defined	spot	on	the	surface	of	
the	sphere	(the	FESTO	logo	in	Fig.	1)	has	been	moved	to	the	top	in	
a	defined	orientation.	After	the	initial	lift-up,	during	the	whole	task,	
the	sphere	is	no	longer	allowed	to	touch	the	bottom.	

Solving	such	tasks	involves,	even	for	humans,	nontrivial	sensory	
motor	skills.	Thus,	programming	a	robot	gripper	manually	for	such	
tasks	is	a	challenging	and	time-consuming	task.	We	show	how	to	
successfully	apply	reinforcement	learning	on	the	pneumatic	gripper	
to	the	above	defined	sphere	orientation	task.	In	order	to	reduce	the	
12-dimensional	state-	and	action-spaces,	we	adopt	a	hierarchical	
approach	with	two	levels.	We	use	low-level	learning	for	basic	move-
ment	primitives	like	lifting	the	sphere	or	rotation	around	three	carte-
sian	axes.	In	high-level	learning	we	use	the	already	learned	low-level	
actions	to	find	a	policy	that	enables	the	gripper	to	move	the	target	
point	on	the	surface	of	the	sphere	to	the	top	position.	

This	challenging	project	involved	development	of	the	gripper	hard-
ware	by	the	FESTO	company	in	parallel	to	policy	learning	by	the	uni-
versity	partner.	For	a	task	as	difficult	as	object	manipulation	with	four	
fingers,	learning	has	to	be	done	on	the	real	hardware.	Simulation	can	
help	for	tuning	the	algorithms,	but	the	final	policy	has	to	be	trained	on	
the	real	hardware,	even	though	learning	times	on	hardware	are	much	
longer	than	in	the	simulation.	Thus,	no	good	policy	can	be	learned	
without	good	hardware.	The	gripper	hardware	has	to	run	stable	dur-
ing	the	whole	learning	phase	which	may	take	many	hours.	Hardware	
optimization	and	policy	learning	had	to	be	done	in	an	efficient	alter-
nating	process.	During	the	learning	phases	hardware	bugs	and	defi-
ciencies	became	obvious.	In	order	to	save	long	idle	times	in	the	pro-
ject,	new	hardware	versions	were	needed	quickly.	In	the	ten	month	
project	we	worked	with	about	nine	different	major	hardware	releases	
and	many	minor	modifications	of	the	hardware.	The	problem	was	that	
good,	successful	policies	could	be	learned	only	on	the	last	two	hard-
ware	releases,	whereas	on	the	previous	releases	learning	only	served	
as	a	means	to	uncover	the	bugs	and	weaknesses	of	the	hardware.	

This	project	was	successful	in	such	a	short	time	because	of	two	
reasons:	

1)	After	any	new	hardware	release	(almost)	no	software	development	
was	necessary.	Only	the	training	with	RL	had	to	be	rerun	which	led	to	
new	improvements.	

2)	Due	to	a	very	efficient	hardware	development	process	involving	a	
tight	coupling	of	CAD	development	and	production	of	new	parts	via	
selective	laser	sintering,	new	major	releases	of	the	gripper	hardware	
could	often	be	built	within	one	week.

I Introduction

3

Current	industrial	applications	use	multi-finger	grippers	for	grasping	
predefined	objects	in	a	well-defined	orientation.	Object	orientation	
and	manipulation	are	not	realized	with	these	grippers.	The	gripper	
is	usually	mounted	to	an	external	robotic	arm	and	the	object	pose	
and	position	relative	to	the	gripper	are	fixed.	

Many	different	multi-finger	grippers	have	been	developed	since	the	
late	70’s	[3].	Only	few	of	these	grippers	have	been	equipped	with	
learning	algorithms	yet.	In	[4]	a	simple	two-fingered	gripper	learns	
to	grasp	objects	with	appropriate	force	without	slip.	The	authors	com-
pare	different	methods	with	the	result	that	a	hybrid	combination	of	
learning	from	demonstration	and	reinforcement	learning	works	best.	
In	[5]	a	quite	general	approach	using	support	vector	machines	is	used	
to	learn	optimal	grasps	of	complex	objects	with	the	GraspIt!	simulator.	

The	new	task	presented	here	requires	simultaneous	grasping	and	
manipulation	requiring	more	than	two	fingers	[6].	The	Fraunhofer	
Vision	Institute	developed	a	flexible	threefinger	gripper	[7]	grasping	
objects	of	different	sizes	by	using	tactile	sensors	on	the	fingertips	
and	image	processing.	This	approach	and	the	three-finger	approach	
in	general	do	not	allow	all	manipulation	actions	[8].	

Thus,	grasping	and	manipulation	of	objects	on	a	fourfinger	gripper	
is	a	new	and	challenging	area.	Due	to	the	complexity	of	the	possible	
motion	patterns	of	such	a	quite	complex	gripper,	the	authors	believe	
that	machine	learning	is	among	the	most	interesting	approaches	to	
intelligent	object	manipulation.	Hierarchical	reinforcement	learning	
is	the	key	approach	for	handling	the	huge	state-spaces	of	the	gripper	
by	splitting	up	the	task	into	subtasks	[9],	[10].

II Related work

Only	on	appropriate	hardware	good	policies	can	be	learned.	Thus,	
for	the	mentioned	dexterous	skills	the	gripper	hardware	had	to	be	
optimized	in	various	ways.	Particularly	important	was	the	parallel	
development	of	hardware	while	the	learning	experiments	were	
already	running.	This	lead	for	example	to	better	finger	tip	surfaces	
for	tighter	object	grasping.	It	also	lead	to	more	reliable	and	durable	
hardware	which	is	crucial	for	reinforcement	learning	because	learning	
on	real	hardware	takes	its	time	and	thus	stresses	the	hardware.	

Finally	we	achieved	the	following	hardware	properties:	The	finger	
tips	establish	a	form-closure	grasp	due	to	a	soft	silicone	surface	
on	the	finger	tips	(black	in	Fig.	1).	The	gripper	construction	is	made	

of	polyamide	allowing	rapid	engineering	and	construction	by	selective	
laser	sintering.	The	height	information	of	the	sphere	above	the	bottom	
of	the	gripper	is	provided	by	an	infrared	distance	unit	in	the	socket	
of	the	gripper.	The	orientation	of	the	sphere	is	tracked	with	an	inte-
grated	inertial	measurement	unit	(IMU)	which	is	mounted	inside	the	
sphere	and	communicates	the	orientation	of	the	sphere	via	bluetooth	
to	the	learning	algorithm	on	the	PC.	The	pneumatic	actors	of	the	fin-
gers	are	position	controlled	using	a	magnetic	encoder	in	each	axis.	
Underlying	pressure	is	controled	using	a	programmable	logic	control-
ler	(FESTO	CECX)	with	ethernet	and	CANbus	interface.	Every	actor	can	
thus	be	manipulated	into	any	position	using	a	single	command.

III Hardware and position control

Our	approach	to	hierarchical	reinforcement	learning	is	divided	into	
low-level	and	high-level	learning.	Low-level	learning	learns	a	set	of	
basic	manipulation	strategies.	Each	one	of	these	strategies	defines	
a	high-level	action.	The	highlevel	learning	process	learns	to	achieve	
a	target	orientation	using	the	pre-learned	high-level	actions.	In	con-
trast	to	other	approaches	such	as	[11]	the	previously	learned	high-
level	actions	are	no	longer	modified	in	high-level	learning.	We	use	
model	free	temporal	difference	tabular	learning	agents.	The	popular	
Q-learning	and	SARSA	algorithms	with	eligibility	traces	[12]	have	been	
applied.	The	results	with	discrete	and	continuous	state	space	are	
compared	in	Section	VI.

A. Low-level learning
1) State and action space:	Our	intuitive	approach	establishes	a	state	
discretization	of	the	twelve-dimensional	gripper.	The	number	of	states	
n = 5	for	each	actor	defines	the	accuracy	of	the	discrete	state	space	
with	512	states.	The	action	space	is	discretized,	too.	Using	three	primi-
tive	movements	(positive,	neutral,	negative)	for	each	actor,	we	end	up	
with	312	possible	actions.

The	discrete	action	space	can	be	reduced	using	the	opponent	fingers	
in	a	mirrored	way	(here	called	finger	pair).	This	pre-knowledge	is	
considering	human	object	manipulation	tactics.	Therefore	the	number	
of	actions	can	be	reduced	dramatically	using	actions	where	on	each	
finger-pair	on	both	fingers	one	actor	moves	simultaneously.	The	basic	
movements	of	a	finger	pair	are:

An	action	of	the	system	with	action	i	for	pair	1	and	j	for	pair	2	is	
denoted	(i, j).	The	action	space	thus	involves	7 x 7 = 49	actions.	
For	example	action	(1, 4)	moves	finger-pair	one	left	and	finger-pair	two	
backward.	All	other	axes	stay	fixed.	An	example	visualization	
of	low-level	actions	can	be	found	in	Fig.	3.	

The	goal	is	to	learn	subpolicies	for	basic	manipulation	skills	
(e.g.	lift-up,	rotate)	used	as	high-level	actions.

2) Reward:	The	reward	is	defined	by	the	movement	of	the	object	and	
its	manipulation	height.	A	rotation	in	positive	z-axis	direction	has	
the	following	reward	function.	Initially	the	reward	for	each	step	is	
negative.	If	the	object	is	lifted	higher	than	 an	additional	reward	
is	generated.	The	lifted	reward	also	includes	the	angle	change	
of	the	performed	action.

IV Manipulation learning

4

To	ensure	manipulations	with	no	contact	to	the	bottom,	only	states	
higher	than			are	rewarded.	The	reward	is	dependent	on	the	number	
of	actions	in	a	learning	episode.	Therefore	the	reward	is	divided	by	
the	number	of	steps	in	each	episode	in	order	to	obtain	a	measure	
independent	of	the	episode		length.	The	episodes	ends	when	the	
object	has	been	dropped.	In	Fig.	5	and	6	the	resulting	reward	per	step	
is	calculated	every	25th	episode	showing	the	learning	process.	In	
these	experiements	a	rotation	skill	around	the	z-axis	is	learned.

B. High-level manipulation learning
High-level	learning	finds	an	optimal	policy	in	order	to	implement	the	
lift-up	task,	the	balancing	above	the	socket	and	the	correct	manipula-
tion	for	moving	the	target	point	on	the	surface	of	the	sphere	up	to	the	
top.	

1) State and action space:	Using	the	height	information	as	an	addi-
tional	state	information,	the	learning	process	can	distinguish	between	
three	possible	target	object	height	states	(down,	medium,	high).	Dif-
ferent	states	will	lead	to	different	actions	selected	in	high-level	learn-
ing.	If	the	object	is	on	the	bottom,	an	action	leading	to	height	gain	is	
performed.	On	the	other	hand,	the	object	can	be	too	high	and	the	
grasp	therefore	be	unstable.	The	grasp	has	to	be	readjusted	to	lose	
height.	Only	if	the	object	is	on	the	desired	height,	the	manipulation	is	
performed.	

The	high-level	agent	has	to	choose	the	correct	manipulation	direction	
for	moving	the	given	surface	point	to	the	top.	Here	the	orientation	of	
the	sphere	is	required.	In	order	to	keep	the	state	space	for	RL	small,	
we	reduce	the	infinite	number	of	threedimensional	orientations	given	
by	the	IMU	to	four	quadrants	as	shown	in	Fig.	2.	The	actual	quadrant	
is	given	by	the	direction	the	target	point	faces.	A	quadrant	is	calcu-
lated	using	a	vector	being	transformed	form	the	Euler	angles	into	the	
cartesian	xyz	system	[3],	whereby

The	following	manually	selected	high-level	actions	are	suitable
for	a	high-level	object	orientation	task.
1)	lift-up
2)	move	first	quadrant	up	=	pos.	rotation	around	x-axis
3)	move	second	quadrant	up	=	pos.	rotation	around	y-axis
4)	move	third	quadrant	up	=	neg.	rotation	around	x-axis
5)	move	fourth	quadrant	up	=	neg.	rotation	around	y-axis
6)	rotate	right
7)	rotate	left
8)	open	grasp	=	lowering

Low-level	actors	learned	to	rotate	the	object	around	the	z-axis	or	
move	a	point	in	a	given	quadrant	upwards.	The	rotation	strategy	of	
high-level	action	number	seven	can	be	seen	in	Fig	3.

Fig. 2 Definition	of	the	four	quad-
rants	for	the	location	of	the	tar-
get	point	to	be	rotated	upwards.

Fig. 3 	High-level	rotation	(e.g.	move	the	object	around	thez-axis).	A	rotation	
strategy	found	by	the	agent	repeats	thefollowing	low-level	actions:	
(3,7),	(7,4),	(7,1),	(7,3),	(4,7),	(7,2).

In	order	to	save	time,	to	preserve	the	hardware	and	for	a	better	under-
standing	of	the	physics,	a	gripper	simulation	was	developed.	Another	
advantage	is	the	parallel	evaluation	of	multiple	learning	algorithms.	
For	this	task	we	evaluated	the	simulation	tools	OPENRave	[13],	
Gazebo	[14]	and	GraspIt!	[15].	Most	tools	have	their	benefits	in	high-
level	planing	or	inverse	kinematics	not	required	here.	Direct	physics	
simulation	is	the	best	way	of	manipulating	physics	configurations	to	
achieve	a	plausible	behavior	with	soft	contact	fingertips.	Therefore	for	
the	gripper	simulation	we	used	the	ODE	physics	engine.	A	drawback	

of	rigid	body	physics	is	the	collision	behavior	of	solid	objects.	This	
problem	can	be	solved	using	contact	joints	with	a	springdamper	
system.	The	simulation	uses	the	pyOpenGL	and	the	pyODE	wrapper	
for	rapid	prototyping	and	visualizing	the	manipulation	results.	The	
simulation	is	used	in	an	RL	glue	[16]	environment.	The	target	object	
and	the	3D	gripper	model	can	be	seen	in	Fig.	4.	Any	hardware	changes	
can	be	simulated	(e.g.	top	mounted	gripper)	before	the	hardware	is	
actually	changed.

V Simulation

5

Due	to	the	dynamics	of	the	pneumatic	system,	the	real	control	is	
20	times	slower	than	the	simulation.

 A. low-level manipulation experiment
The	learning	result	of	a	z-axis	rotation	can	be	found	in	Fig.	5	using	
different	model-free	temporal-difference	tabular	learning	agents.	

1) Continuous vs. discrete state space:	By	using	a	state	discretization,	
the	tabular	learning	algorithm	leads	to	a	memory	consumption	prob-
lem	of	storing	a	Q(s,	a)-table	of	size	512		49	(45634	MB).	Moreover,	
additional	information	is	not	yet	included	(object	height,	force	sensor	
of	fingertips).	Thus	we	compared	the	following	methods	for	approxi-
mating	the	Q-table:		
•	TileCoding		
•	RBFs	[17]		
•	LSPI	(Least-Squares	Policy	Iteration	[18])	

We	applied	TileCoding[12]	with	8	partitions	and	16	tilings.	The	com-
pared	RBF	learning	agent	uses	412	x	49	radial	basis	functions	to	learn	
value	function	approximations.	The	simulation	results	are	shown	in	
Fig	6.	The	TileCoding-based	agent	has	robust	learning	results	with	the	
average	reward	per	step	being	comparable	to	the	tabular	learning	
algorithms	(see	Fig.	5).	Therefore	a	tabular	agent	using	a	discrete	
state	space	was	selected	for	low-level	learning.

B. High-level manipulation experiment
As	described	earlier,	high-level	learning	uses	the	previously	learned	
low-level	actions.	This	is	an	episodic	discrete	task.	After	50	learning	
episodes	the	agent	converges	towards	a	robust	policy	(see	Fig.	7).	
The	robustness	is	quite	high.	Once	the	object	is	lifted	initially,	the	
gripper	may	drop	the	sphere	in	one	of	about	200	attempts,	what	can	
be	seen	in	Fig.	7	after	40	episodes.	When	the	object	hits	the	bottom,	
the	agent	needs	more	steps	to	lift	the	object	again	to	the	required	
manipulation	height.

C. Learning time
Manipulation	of	the	sphere	to	the	desired	orientation	with	the	target	
point	on	top	requires	about	12	high-level	actions	and	about	60	
low-level	actions.	Due	to	hardware	speed	limitations	this	results	
in	a	time	of	about	30	seconds.	The	complete	learning	phase	takes	
around	9	hours	considering	that	all	eight	high-level	actions	are	
learned	separately.	The	learning	process	of	the	high-level	manipula-
tion	requires	only	one	hour.

VI Experimental results

Fig. 4 Gripper	simulation.

Fig. 5 	Learning	high-level	action	(discrete	state	space).	The	reward	per	
step	shows	the	amount	of	rotation	a	single	action	has	performed	
in	the	goal	direction.	The	curves	show	single	execution	of	different	
discrete	learning	agents	with	different	learning	parameters.

Fig. 6 Learning	high-level	action	(continuous	state	space).	The	
reward	per	steps	shows	the	amount	of	rotation	a	single	action	
has	performed	in	the	goal	direction.	The	curves	show	different	
continuous	learning	agent	with	different	learning parameters.

Fig. 7 Learning	high-level	manipulation	for	a	given	goal	orientation.	The	
blue	dots	represent	the	required	number	of	high-level	actions	to	
achieve	the	goal	orientation.	Outliers	are	due	to	the	sphere	being	
dropped	during	manipulation.	After	about	15	episodes	a	robust	
strategy	has	been	found.

6

As	the	results	show	we	successfully	solved	a	highdimensional	object	
manipulation	task	using	RL.	This	success	was	due	to	a	hierarchical	
decomposition	of	the	task	and	an	efficient	alternation	of	hardware	
development	and	machine	learning.	In	the	future	we	want	to	learn	ini-
tial	policies	in	the	simulation	which	are	then	transferred	to	the	hard-

ware	and	improved	by	further	RL.	We	may	also	provide	hand-coded	
initial	policies	to	be	improved	by	RL	on	the	hardware.	Our	current	
policy	learning	approach	works	with	an	underlying	classical	state	
control.	As	an	alternative,	we	want	to	use	RL	for	learning	basic	actions	
which	directly	control	the	pressure	levels	on	the	valves.

VII Conclusion

The	authors	would	like	to	thank	the	FESTO	Bionic	Learning	Network	
contributing	the	gripper	hardware	and	its	team	Nadine	Kärcher,	Elias	
Knubben,	Arne	Rost	and	Andreas	Gause.	Special	thanks	to	Vien	Ngo,	
Michel	Tokic	and	Benjamin	Stähle	for	fruitful	discussions	as	well	as	
Tobias	Fromm	for	his	generous	support.

Acknowledgments

[1]		S.	Schädle	and	W.	Ertel,	“Videos	of	the	learning	gripper.”	February	

2013,	http://kids.hs-weingarten.de/learning-gripper/videos/.	

[2]		W.	Stoll,	Bionik:	Impulsgeber	der	Technik,	1st	ed.	Schmidt,	10	

2012.	

[3]		B.	Siciliano	and	O.	Khatib,	Eds.,	Springer	Handbook	of	Robotics.	

Springer,	2008.	

[4]		J.	Dominguez-Lopez,	R.	Damper,	R.	Crowder,	and	C.	Harris,	“Adap-

tive	neurofuzzy	control	of	a	robotic	gripper	with	on-line	machine	

learning,”	Robotics	and	Autonomous	Systems,	vol.	48,	no.	23,	pp.	

93–	110,	Sep.	2004.	

[5]		R.	Pelossof,	A.	Miller,	P.	Allen,	and	T.	Jebara,	“An	SVM	learning	

approach	to	robotic	grasping,”	in	IEEE	International	Conference	on	

Robotics	and	Automation,	vol.	4,	26-may	1,	2004,	pp.	3512	–	3518	

Vol.4.	

[6]		N.	Daoud,	J.	P.	Gazeau,	S.	Zeghloul,	and	M.	Arsicault,	“A	real-time	

strategy	for	dexterous	manipulation:	Fingertips	motion	planning,	

force	sensing	and	grasp	stability,”	Robot.	Auton.	Syst.,	vol.	60,	no.	

3,	pp.	377–386,	Mar.	2012.	

[7]		W.	Weller,	“Intelligenter,	flexibler	Drei-Finger-Greifer	mit	integrierter	

Sensorik,”	Stand:	07.10.2012,	http://www.vision.fraunhofer.de/	

de/presse/72.html.	

[8]		C.	Ferrari	and	J.	Canny,	“Planning	optimal	grasps,”	in	IEEE	Interna-

tional	Conference	on	Robotics	and	Automation.	IEEE,	1992,	pp.	

2290–2295.	

[9]		R.	S.	Sutton,	D.	Precup,	S.	Singh	et	al.,	“Between	mdps	and	semim-

dps:	A	framework	for	temporal	abstraction	in	reinforcement	learn-

ing,”	Artificial	intelligence,	vol.	112,	no.	1,	pp.	181–211,	1999.	

[10]		A.	G.	Barto	and	S.	Mahadevan,	“Recent	advances	in	hierarchical	

reinforcement	learning,”	Discrete	Event	Dynamic	Systems,	vol.	

13,	no.	4,	pp.	341–379,	2003.	

[11]		T.	G.	Dietterich,	“Hierarchical	reinforcement	learning	with	the	

maxq	value	function	decomposition,”	Journal	of	Artificial	Intelli-

gence	Research,	no.	13,	pp.	227–303,	2000.	

[12]		R.	S.	Sutton	and	A.	G.	Barto,	Reinforcement	learning:	An	introduc-

tion.	Cambridge,	Mass.:	MIT	Press,	1998.	

[13]		R.	Diankov	and	J.	Kuffner,	“OpenRave:	A	planning	architecture	for	

autonomous	robotics,”	Robotics	Institute,	Pittsburgh,	PA,	Tech.	

Rep.	CMU-RI-TR-08-34,	2008.	

[14]		B.	Calli,	M.	Wisse,	and	P.	Jonker,	“Grasping	of	unknown	objects	via	

curvature	maximization	using	active	vision,”	in	International	Con-

ference	on	Intelligent	Robots	and	Systems	(IROS).	IEEE,	2011,	pp.	

995–1001.	

[15]		A.	T.	Miller	and	P.	K.	Allen,	“Graspit!	a	versatile	simulator	for	

robotic	grasping,”	Robotics	&	Automation	Magazine,	IEEE,	vol.	

11,	no.	4,	pp.	110–122,	2004.	

[16]		B.	Tanner	and	A.	White,	“Rl-glue:	Language-independent	software	

for	reinforcement-learning	experiments,”	The	Journal	of	Machine	

Learning	Research,	vol.	10,	pp.	2133–2136,	2009.	

[17]		M.	Schneider,	“Reinforcement	learning	with	RBF-networks,”	Sci-

entific	Project,	University	of	Applied	Sciences	Weingarten,	2006.	

[Online].	Available:	http://amser.hs-weingarten.de/dokumente/	

project	schneider	rlwithrbf.pdf	

[18]		M.	G.	Lagoudakis	and	R.	Parr,	“Model-free	least-squares	policy	

iteration,”	in	Neural	Information	Processing	Systems,	2001,	pp.	

1547–	1554.

References

