
Dexterous Manipulation Using Hierarchical
Reinforcement Learning

Stephan Schädle	 Institute for Artificial Intelligence
Wolfgang Ertel	 University of Applied Sciences
	 Ravensburg-Weingarten
	 Germany

	 schaedst@hs-weingarten.de
	 ertel@hsweingarten.de

2

Abstract. On a novel pneumatic four-finger gripper with three degrees
of freedom per finger we apply reinforcement learning to learn dexter-
ous manipulation of objects. In order to reduce the search space, we
implemented hierarchical learning on two levels. Low-level learning is
used for basic movement primitives like grabbing, lifting or rotation of
an object around three cartesian axes, whereas in high-level learning
we use the already learned low-level actions to find a policy that ena-
bles the gripper to move a target point on the surface of a sphere to
the top position in a few seconds. It turns out that Q-learning with a
finite state- and action space solves the learning task very well.
Additional videos are available at [1].

Fig. 1 FESTO Learning Gripper

Flexible and dexterous manipulation of objects is getting more and
more important for industrial applications. Motivated by this goal, the
FESTO company is doing research on pneumatic gripper technology.
Among others, a fourfinger gripper with three pneumatic actors per
finger has been developed. The gripper shown in Fig. 1 is inspired by
an elephant’s trunk [2]. In contrast to classical pneumatic cylinders,
the blue pneumatic actors shown in Fig. 1 can provide soft forces.
The gripper comprises four crosswise-mounted pneumatic fingers
and has twelve degrees of freedom leading to a high-dimensional
state and action space. The skills and versatility of the human hand
served as a guidance during the development of the gripper.

Possible applications of the gripper are the classical binpicking task
where the gripper picks a detected object with arbitrary orientation
from a bin, grasps it, rotates it without releasing into the desired ori-
entation and then puts it to the desired location on a conveyor belt.
A similar application is the placement of a piece of fruit, e.g. an apple,
with its nicest-looking side on top into a fruit box pallet.

As a demonstration of such dexterous skills, our goal was to show
that the new pneumatic gripper is able to learn the following task:
Initially, a sphere lying on the bottom of the gripper has to be lifted
and manipulated, i.e. rotated, until a defined spot on the surface of
the sphere (the FESTO logo in Fig. 1) has been moved to the top in
a defined orientation. After the initial lift-up, during the whole task,
the sphere is no longer allowed to touch the bottom.

Solving such tasks involves, even for humans, nontrivial sensory
motor skills. Thus, programming a robot gripper manually for such
tasks is a challenging and time-consuming task. We show how to
successfully apply reinforcement learning on the pneumatic gripper
to the above defined sphere orientation task. In order to reduce the
12-dimensional state- and action-spaces, we adopt a hierarchical
approach with two levels. We use low-level learning for basic move-
ment primitives like lifting the sphere or rotation around three carte-
sian axes. In high-level learning we use the already learned low-level
actions to find a policy that enables the gripper to move the target
point on the surface of the sphere to the top position.

This challenging project involved development of the gripper hard-
ware by the FESTO company in parallel to policy learning by the uni-
versity partner. For a task as difficult as object manipulation with four
fingers, learning has to be done on the real hardware. Simulation can
help for tuning the algorithms, but the final policy has to be trained on
the real hardware, even though learning times on hardware are much
longer than in the simulation. Thus, no good policy can be learned
without good hardware. The gripper hardware has to run stable dur-
ing the whole learning phase which may take many hours. Hardware
optimization and policy learning had to be done in an efficient alter-
nating process. During the learning phases hardware bugs and defi-
ciencies became obvious. In order to save long idle times in the pro-
ject, new hardware versions were needed quickly. In the ten month
project we worked with about nine different major hardware releases
and many minor modifications of the hardware. The problem was that
good, successful policies could be learned only on the last two hard-
ware releases, whereas on the previous releases learning only served
as a means to uncover the bugs and weaknesses of the hardware.

This project was successful in such a short time because of two
reasons:

1) After any new hardware release (almost) no software development
was necessary. Only the training with RL had to be rerun which led to
new improvements.

2) Due to a very efficient hardware development process involving a
tight coupling of CAD development and production of new parts via
selective laser sintering, new major releases of the gripper hardware
could often be built within one week.

I Introduction

3

Current industrial applications use multi-finger grippers for grasping
predefined objects in a well-defined orientation. Object orientation
and manipulation are not realized with these grippers. The gripper
is usually mounted to an external robotic arm and the object pose
and position relative to the gripper are fixed.

Many different multi-finger grippers have been developed since the
late 70’s [3]. Only few of these grippers have been equipped with
learning algorithms yet. In [4] a simple two-fingered gripper learns
to grasp objects with appropriate force without slip. The authors com-
pare different methods with the result that a hybrid combination of
learning from demonstration and reinforcement learning works best.
In [5] a quite general approach using support vector machines is used
to learn optimal grasps of complex objects with the GraspIt! simulator.

The new task presented here requires simultaneous grasping and
manipulation requiring more than two fingers [6]. The Fraunhofer
Vision Institute developed a flexible threefinger gripper [7] grasping
objects of different sizes by using tactile sensors on the fingertips
and image processing. This approach and the three-finger approach
in general do not allow all manipulation actions [8].

Thus, grasping and manipulation of objects on a fourfinger gripper
is a new and challenging area. Due to the complexity of the possible
motion patterns of such a quite complex gripper, the authors believe
that machine learning is among the most interesting approaches to
intelligent object manipulation. Hierarchical reinforcement learning
is the key approach for handling the huge state-spaces of the gripper
by splitting up the task into subtasks [9], [10].

II Related work

Only on appropriate hardware good policies can be learned. Thus,
for the mentioned dexterous skills the gripper hardware had to be
optimized in various ways. Particularly important was the parallel
development of hardware while the learning experiments were
already running. This lead for example to better finger tip surfaces
for tighter object grasping. It also lead to more reliable and durable
hardware which is crucial for reinforcement learning because learning
on real hardware takes its time and thus stresses the hardware.

Finally we achieved the following hardware properties: The finger
tips establish a form-closure grasp due to a soft silicone surface
on the finger tips (black in Fig. 1). The gripper construction is made

of polyamide allowing rapid engineering and construction by selective
laser sintering. The height information of the sphere above the bottom
of the gripper is provided by an infrared distance unit in the socket
of the gripper. The orientation of the sphere is tracked with an inte-
grated inertial measurement unit (IMU) which is mounted inside the
sphere and communicates the orientation of the sphere via bluetooth
to the learning algorithm on the PC. The pneumatic actors of the fin-
gers are position controlled using a magnetic encoder in each axis.
Underlying pressure is controled using a programmable logic control-
ler (FESTO CECX) with ethernet and CANbus interface. Every actor can
thus be manipulated into any position using a single command.

III Hardware and position control

Our approach to hierarchical reinforcement learning is divided into
low-level and high-level learning. Low-level learning learns a set of
basic manipulation strategies. Each one of these strategies defines
a high-level action. The highlevel learning process learns to achieve
a target orientation using the pre-learned high-level actions. In con-
trast to other approaches such as [11] the previously learned high-
level actions are no longer modified in high-level learning. We use
model free temporal difference tabular learning agents. The popular
Q-learning and SARSA algorithms with eligibility traces [12] have been
applied. The results with discrete and continuous state space are
compared in Section VI.

A. Low-level learning
1) State and action space: Our intuitive approach establishes a state
discretization of the twelve-dimensional gripper. The number of states
n = 5 for each actor defines the accuracy of the discrete state space
with 512 states. The action space is discretized, too. Using three primi-
tive movements (positive, neutral, negative) for each actor, we end up
with 312 possible actions.

The discrete action space can be reduced using the opponent fingers
in a mirrored way (here called finger pair). This pre-knowledge is
considering human object manipulation tactics. Therefore the number
of actions can be reduced dramatically using actions where on each
finger-pair on both fingers one actor moves simultaneously. The basic
movements of a finger pair are:

An action of the system with action i for pair 1 and j for pair 2 is
denoted (i, j). The action space thus involves 7 x 7 = 49 actions.
For example action (1, 4) moves finger-pair one left and finger-pair two
backward. All other axes stay fixed. An example visualization
of low-level actions can be found in Fig. 3.

The goal is to learn subpolicies for basic manipulation skills
(e.g. lift-up, rotate) used as high-level actions.

2) Reward: The reward is defined by the movement of the object and
its manipulation height. A rotation in positive z-axis direction has
the following reward function. Initially the reward for each step is
negative. If the object is lifted higher than an additional reward
is generated. The lifted reward also includes the angle change
of the performed action.

IV Manipulation learning

4

To ensure manipulations with no contact to the bottom, only states
higher than are rewarded. The reward is dependent on the number
of actions in a learning episode. Therefore the reward is divided by
the number of steps in each episode in order to obtain a measure
independent of the episode length. The episodes ends when the
object has been dropped. In Fig. 5 and 6 the resulting reward per step
is calculated every 25th episode showing the learning process. In
these experiements a rotation skill around the z-axis is learned.

B. High-level manipulation learning
High-level learning finds an optimal policy in order to implement the
lift-up task, the balancing above the socket and the correct manipula-
tion for moving the target point on the surface of the sphere up to the
top.

1) State and action space: Using the height information as an addi-
tional state information, the learning process can distinguish between
three possible target object height states (down, medium, high). Dif-
ferent states will lead to different actions selected in high-level learn-
ing. If the object is on the bottom, an action leading to height gain is
performed. On the other hand, the object can be too high and the
grasp therefore be unstable. The grasp has to be readjusted to lose
height. Only if the object is on the desired height, the manipulation is
performed.

The high-level agent has to choose the correct manipulation direction
for moving the given surface point to the top. Here the orientation of
the sphere is required. In order to keep the state space for RL small,
we reduce the infinite number of threedimensional orientations given
by the IMU to four quadrants as shown in Fig. 2. The actual quadrant
is given by the direction the target point faces. A quadrant is calcu-
lated using a vector being transformed form the Euler angles into the
cartesian xyz system [3], whereby

The following manually selected high-level actions are suitable
for a high-level object orientation task.
1) lift-up
2) move first quadrant up = pos. rotation around x-axis
3) move second quadrant up = pos. rotation around y-axis
4) move third quadrant up = neg. rotation around x-axis
5) move fourth quadrant up = neg. rotation around y-axis
6) rotate right
7) rotate left
8) open grasp = lowering

Low-level actors learned to rotate the object around the z-axis or
move a point in a given quadrant upwards. The rotation strategy of
high-level action number seven can be seen in Fig 3.

Fig. 2 Definition of the four quad-
rants for the location of the tar-
get point to be rotated upwards.

Fig. 3 �High-level rotation (e.g. move the object around thez-axis). A rotation
strategy found by the agent repeats thefollowing low-level actions:
(3,7), (7,4), (7,1), (7,3), (4,7), (7,2).

In order to save time, to preserve the hardware and for a better under-
standing of the physics, a gripper simulation was developed. Another
advantage is the parallel evaluation of multiple learning algorithms.
For this task we evaluated the simulation tools OPENRave [13],
Gazebo [14] and GraspIt! [15]. Most tools have their benefits in high-
level planing or inverse kinematics not required here. Direct physics
simulation is the best way of manipulating physics configurations to
achieve a plausible behavior with soft contact fingertips. Therefore for
the gripper simulation we used the ODE physics engine. A drawback

of rigid body physics is the collision behavior of solid objects. This
problem can be solved using contact joints with a springdamper
system. The simulation uses the pyOpenGL and the pyODE wrapper
for rapid prototyping and visualizing the manipulation results. The
simulation is used in an RL glue [16] environment. The target object
and the 3D gripper model can be seen in Fig. 4. Any hardware changes
can be simulated (e.g. top mounted gripper) before the hardware is
actually changed.

V Simulation

5

Due to the dynamics of the pneumatic system, the real control is
20 times slower than the simulation.

 A. low-level manipulation experiment
The learning result of a z-axis rotation can be found in Fig. 5 using
different model-free temporal-difference tabular learning agents.

1) Continuous vs. discrete state space: By using a state discretization,
the tabular learning algorithm leads to a memory consumption prob-
lem of storing a Q(s, a)-table of size 512 49 (45634 MB). Moreover,
additional information is not yet included (object height, force sensor
of fingertips). Thus we compared the following methods for approxi-
mating the Q-table:
•	TileCoding
•	RBFs [17]
•	LSPI (Least-Squares Policy Iteration [18])

We applied TileCoding[12] with 8 partitions and 16 tilings. The com-
pared RBF learning agent uses 412 x 49 radial basis functions to learn
value function approximations. The simulation results are shown in
Fig 6. The TileCoding-based agent has robust learning results with the
average reward per step being comparable to the tabular learning
algorithms (see Fig. 5). Therefore a tabular agent using a discrete
state space was selected for low-level learning.

B. High-level manipulation experiment
As described earlier, high-level learning uses the previously learned
low-level actions. This is an episodic discrete task. After 50 learning
episodes the agent converges towards a robust policy (see Fig. 7).
The robustness is quite high. Once the object is lifted initially, the
gripper may drop the sphere in one of about 200 attempts, what can
be seen in Fig. 7 after 40 episodes. When the object hits the bottom,
the agent needs more steps to lift the object again to the required
manipulation height.

C. Learning time
Manipulation of the sphere to the desired orientation with the target
point on top requires about 12 high-level actions and about 60
low-level actions. Due to hardware speed limitations this results
in a time of about 30 seconds. The complete learning phase takes
around 9 hours considering that all eight high-level actions are
learned separately. The learning process of the high-level manipula-
tion requires only one hour.

VI Experimental results

Fig. 4 Gripper simulation.

Fig. 5 	 �Learning high-level action (discrete state space). The reward per
step shows the amount of rotation a single action has performed
in the goal direction. The curves show single execution of different
discrete learning agents with different learning parameters.

Fig. 6	 �Learning high-level action (continuous state space). The
reward per steps shows the amount of rotation a single action
has performed in the goal direction. The curves show different
continuous learning agent with different learning parameters.

Fig. 7	� Learning high-level manipulation for a given goal orientation. The
blue dots represent the required number of high-level actions to
achieve the goal orientation. Outliers are due to the sphere being
dropped during manipulation. After about 15 episodes a robust
strategy has been found.

6

As the results show we successfully solved a highdimensional object
manipulation task using RL. This success was due to a hierarchical
decomposition of the task and an efficient alternation of hardware
development and machine learning. In the future we want to learn ini-
tial policies in the simulation which are then transferred to the hard-

ware and improved by further RL. We may also provide hand-coded
initial policies to be improved by RL on the hardware. Our current
policy learning approach works with an underlying classical state
control. As an alternative, we want to use RL for learning basic actions
which directly control the pressure levels on the valves.

VII Conclusion

The authors would like to thank the FESTO Bionic Learning Network
contributing the gripper hardware and its team Nadine Kärcher, Elias
Knubben, Arne Rost and Andreas Gause. Special thanks to Vien Ngo,
Michel Tokic and Benjamin Stähle for fruitful discussions as well as
Tobias Fromm for his generous support.

Acknowledgments

[1] �S. Schädle and W. Ertel, “Videos of the learning gripper.” February

2013, http://kids.hs-weingarten.de/learning-gripper/videos/.

[2] �W. Stoll, Bionik: Impulsgeber der Technik, 1st ed. Schmidt, 10

2012.

[3] �B. Siciliano and O. Khatib, Eds., Springer Handbook of Robotics.

Springer, 2008.

[4] �J. Dominguez-Lopez, R. Damper, R. Crowder, and C. Harris, “Adap-

tive neurofuzzy control of a robotic gripper with on-line machine

learning,” Robotics and Autonomous Systems, vol. 48, no. 23, pp.

93– 110, Sep. 2004.

[5] �R. Pelossof, A. Miller, P. Allen, and T. Jebara, “An SVM learning

approach to robotic grasping,” in IEEE International Conference on

Robotics and Automation, vol. 4, 26-may 1, 2004, pp. 3512 – 3518

Vol.4.

[6] �N. Daoud, J. P. Gazeau, S. Zeghloul, and M. Arsicault, “A real-time

strategy for dexterous manipulation: Fingertips motion planning,

force sensing and grasp stability,” Robot. Auton. Syst., vol. 60, no.

3, pp. 377–386, Mar. 2012.

[7] �W. Weller, “Intelligenter, flexibler Drei-Finger-Greifer mit integrierter

Sensorik,” Stand: 07.10.2012, http://www.vision.fraunhofer.de/

de/presse/72.html.

[8] �C. Ferrari and J. Canny, “Planning optimal grasps,” in IEEE Interna-

tional Conference on Robotics and Automation. IEEE, 1992, pp.

2290–2295.

[9] �R. S. Sutton, D. Precup, S. Singh et al., “Between mdps and semim-

dps: A framework for temporal abstraction in reinforcement learn-

ing,” Artificial intelligence, vol. 112, no. 1, pp. 181–211, 1999.

[10] �A. G. Barto and S. Mahadevan, “Recent advances in hierarchical

reinforcement learning,” Discrete Event Dynamic Systems, vol.

13, no. 4, pp. 341–379, 2003.

[11] �T. G. Dietterich, “Hierarchical reinforcement learning with the

maxq value function decomposition,” Journal of Artificial Intelli-

gence Research, no. 13, pp. 227–303, 2000.

[12] �R. S. Sutton and A. G. Barto, Reinforcement learning: An introduc-

tion. Cambridge, Mass.: MIT Press, 1998.

[13] �R. Diankov and J. Kuffner, “OpenRave: A planning architecture for

autonomous robotics,” Robotics Institute, Pittsburgh, PA, Tech.

Rep. CMU-RI-TR-08-34, 2008.

[14] �B. Calli, M. Wisse, and P. Jonker, “Grasping of unknown objects via

curvature maximization using active vision,” in International Con-

ference on Intelligent Robots and Systems (IROS). IEEE, 2011, pp.

995–1001.

[15] �A. T. Miller and P. K. Allen, “Graspit! a versatile simulator for

robotic grasping,” Robotics & Automation Magazine, IEEE, vol.

11, no. 4, pp. 110–122, 2004.

[16] �B. Tanner and A. White, “Rl-glue: Language-independent software

for reinforcement-learning experiments,” The Journal of Machine

Learning Research, vol. 10, pp. 2133–2136, 2009.

[17] �M. Schneider, “Reinforcement learning with RBF-networks,” Sci-

entific Project, University of Applied Sciences Weingarten, 2006.

[Online]. Available: http://amser.hs-weingarten.de/dokumente/

project schneider rlwithrbf.pdf

[18] �M. G. Lagoudakis and R. Parr, “Model-free least-squares policy

iteration,” in Neural Information Processing Systems, 2001, pp.

1547– 1554.

References

