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Abstract. On a novel pneumatic four-finger gripper with three degrees 
of freedom per finger we apply reinforcement learning to learn dexter-
ous manipulation of objects. In order to reduce the search space, we 
implemented hierarchical learning on two levels. Low-level learning is 
used for basic movement primitives like grabbing, lifting or rotation of 
an object around three cartesian axes, whereas in high-level learning 
we use the already learned low-level actions to find a policy that ena-
bles the gripper to move a target point on the surface of a sphere to 
the top position in a few seconds. It turns out that Q-learning with a 
finite state- and action space solves the learning task very well.  
Additional videos are available at [1].  

Fig. 1 FESTO Learning Gripper

Flexible and dexterous manipulation of objects is getting more and 
more important for industrial applications. Motivated by this goal, the 
FESTO company is doing research on pneumatic gripper technology. 
Among others, a fourfinger gripper with three pneumatic actors per 
finger has been developed. The gripper shown in Fig. 1 is inspired by 
an elephant’s trunk [2]. In contrast to classical pneumatic cylinders, 
the blue pneumatic actors shown in Fig. 1 can provide soft forces.  
The gripper comprises four crosswise-mounted pneumatic fingers  
and has twelve degrees of freedom leading to a high-dimensional 
state and action space. The skills and versatility of the human hand 
served as a guidance during the development of the gripper. 

Possible applications of the gripper are the classical binpicking task 
where the gripper picks a detected object with arbitrary orientation 
from a bin, grasps it, rotates it without releasing into the desired ori-
entation and then puts it to the desired location on a conveyor belt.  
A similar application is the placement of a piece of fruit, e.g. an apple, 
with its nicest-looking side on top into a fruit box pallet. 

As a demonstration of such dexterous skills, our goal was to show 
that the new pneumatic gripper is able to learn the following task:  
Initially, a sphere lying on the bottom of the gripper has to be lifted 
and manipulated, i.e. rotated, until a defined spot on the surface of 
the sphere (the FESTO logo in Fig. 1) has been moved to the top in  
a defined orientation. After the initial lift-up, during the whole task, 
the sphere is no longer allowed to touch the bottom. 

Solving such tasks involves, even for humans, nontrivial sensory 
motor skills. Thus, programming a robot gripper manually for such 
tasks is a challenging and time-consuming task. We show how to  
successfully apply reinforcement learning on the pneumatic gripper  
to the above defined sphere orientation task. In order to reduce the 
12-dimensional state- and action-spaces, we adopt a hierarchical 
approach with two levels. We use low-level learning for basic move-
ment primitives like lifting the sphere or rotation around three carte-
sian axes. In high-level learning we use the already learned low-level 
actions to find a policy that enables the gripper to move the target 
point on the surface of the sphere to the top position. 

This challenging project involved development of the gripper hard-
ware by the FESTO company in parallel to policy learning by the uni-
versity partner. For a task as difficult as object manipulation with four 
fingers, learning has to be done on the real hardware. Simulation can 
help for tuning the algorithms, but the final policy has to be trained on 
the real hardware, even though learning times on hardware are much 
longer than in the simulation. Thus, no good policy can be learned 
without good hardware. The gripper hardware has to run stable dur-
ing the whole learning phase which may take many hours. Hardware 
optimization and policy learning had to be done in an efficient alter-
nating process. During the learning phases hardware bugs and defi-
ciencies became obvious. In order to save long idle times in the pro-
ject, new hardware versions were needed quickly. In the ten month 
project we worked with about nine different major hardware releases 
and many minor modifications of the hardware. The problem was that 
good, successful policies could be learned only on the last two hard-
ware releases, whereas on the previous releases learning only served 
as a means to uncover the bugs and weaknesses of the hardware. 

This project was successful in such a short time because of two 
reasons: 

1) After any new hardware release (almost) no software development 
was necessary. Only the training with RL had to be rerun which led to 
new improvements. 

2) Due to a very efficient hardware development process involving a 
tight coupling of CAD development and production of new parts via 
selective laser sintering, new major releases of the gripper hardware 
could often be built within one week.

I Introduction
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Current industrial applications use multi-finger grippers for grasping 
predefined objects in a well-defined orientation. Object orientation 
and manipulation are not realized with these grippers. The gripper  
is usually mounted to an external robotic arm and the object pose  
and position relative to the gripper are fixed. 

Many different multi-finger grippers have been developed since the 
late 70’s [3]. Only few of these grippers have been equipped with 
learning algorithms yet. In [4] a simple two-fingered gripper learns  
to grasp objects with appropriate force without slip. The authors com-
pare different methods with the result that a hybrid combination of 
learning from demonstration and reinforcement learning works best. 
In [5] a quite general approach using support vector machines is used 
to learn optimal grasps of complex objects with the GraspIt! simulator. 

The new task presented here requires simultaneous grasping and 
manipulation requiring more than two fingers [6]. The Fraunhofer 
Vision Institute developed a flexible threefinger gripper [7] grasping 
objects of different sizes by using tactile sensors on the fingertips  
and image processing. This approach and the three-finger approach  
in general do not allow all manipulation actions [8]. 

Thus, grasping and manipulation of objects on a fourfinger gripper  
is a new and challenging area. Due to the complexity of the possible 
motion patterns of such a quite complex gripper, the authors believe 
that machine learning is among the most interesting approaches to 
intelligent object manipulation. Hierarchical reinforcement learning  
is the key approach for handling the huge state-spaces of the gripper 
by splitting up the task into subtasks [9], [10].

II Related work

Only on appropriate hardware good policies can be learned. Thus,  
for the mentioned dexterous skills the gripper hardware had to be 
optimized in various ways. Particularly important was the parallel 
development of hardware while the learning experiments were 
already running. This lead for example to better finger tip surfaces  
for tighter object grasping. It also lead to more reliable and durable 
hardware which is crucial for reinforcement learning because learning 
on real hardware takes its time and thus stresses the hardware. 

Finally we achieved the following hardware properties: The finger  
tips establish a form-closure grasp due to a soft silicone surface  
on the finger tips (black in Fig. 1). The gripper construction is made  

of polyamide allowing rapid engineering and construction by selective 
laser sintering. The height information of the sphere above the bottom 
of the gripper is provided by an infrared distance unit in the socket  
of the gripper. The orientation of the sphere is tracked with an inte-
grated inertial measurement unit (IMU) which is mounted inside the 
sphere and communicates the orientation of the sphere via bluetooth 
to the learning algorithm on the PC. The pneumatic actors of the fin-
gers are position controlled using a magnetic encoder in each axis. 
Underlying pressure is controled using a programmable logic control-
ler (FESTO CECX) with ethernet and CANbus interface. Every actor can 
thus be manipulated into any position using a single command.

III Hardware and position control

Our approach to hierarchical reinforcement learning is divided into 
low-level and high-level learning. Low-level learning learns a set of 
basic manipulation strategies. Each one of these strategies defines  
a high-level action. The highlevel learning process learns to achieve  
a target orientation using the pre-learned high-level actions. In con-
trast to other approaches such as [11] the previously learned high-
level actions are no longer modified in high-level learning. We use 
model free temporal difference tabular learning agents. The popular 
Q-learning and SARSA algorithms with eligibility traces [12] have been 
applied. The results with discrete and continuous state space are 
compared in Section VI.

A. Low-level learning
1) State and action space: Our intuitive approach establishes a state 
discretization of the twelve-dimensional gripper. The number of states 
n = 5 for each actor defines the accuracy of the discrete state space 
with 512 states. The action space is discretized, too. Using three primi-
tive movements (positive, neutral, negative) for each actor, we end up 
with 312 possible actions.

The discrete action space can be reduced using the opponent fingers 
in a mirrored way (here called finger pair). This pre-knowledge is  
considering human object manipulation tactics. Therefore the number 
of actions can be reduced dramatically using actions where on each 
finger-pair on both fingers one actor moves simultaneously. The basic 
movements of a finger pair are:

An action of the system with action i for pair 1 and j for pair 2 is 
denoted (i, j). The action space thus involves 7 x 7 = 49 actions.  
For example action (1, 4) moves finger-pair one left and finger-pair two 
backward. All other axes stay fixed. An example visualization  
of low-level actions can be found in Fig. 3. 

The goal is to learn subpolicies for basic manipulation skills  
(e.g. lift-up, rotate) used as high-level actions.

2) Reward: The reward is defined by the movement of the object and 
its manipulation height. A rotation in positive z-axis direction has  
the following reward function. Initially the reward for each step is  
negative. If the object is lifted higher than  an additional reward  
is generated. The lifted reward also includes the angle change    
of the performed action.

IV Manipulation learning
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To ensure manipulations with no contact to the bottom, only states 
higher than   are rewarded. The reward is dependent on the number  
of actions in a learning episode. Therefore the reward is divided by  
the number of steps in each episode in order to obtain a measure 
independent of the episode  length. The episodes ends when the 
object has been dropped. In Fig. 5 and 6 the resulting reward per step 
is calculated every 25th episode showing the learning process. In 
these experiements a rotation skill around the z-axis is learned.

B. High-level manipulation learning 
High-level learning finds an optimal policy in order to implement the 
lift-up task, the balancing above the socket and the correct manipula-
tion for moving the target point on the surface of the sphere up to the 
top. 

1) State and action space: Using the height information as an addi-
tional state information, the learning process can distinguish between 
three possible target object height states (down, medium, high). Dif-
ferent states will lead to different actions selected in high-level learn-
ing. If the object is on the bottom, an action leading to height gain is 
performed. On the other hand, the object can be too high and the 
grasp therefore be unstable. The grasp has to be readjusted to lose 
height. Only if the object is on the desired height, the manipulation is 
performed. 

The high-level agent has to choose the correct manipulation direction 
for moving the given surface point to the top. Here the orientation of 
the sphere is required. In order to keep the state space for RL small, 
we reduce the infinite number of threedimensional orientations given 
by the IMU to four quadrants as shown in Fig. 2. The actual quadrant 
is given by the direction the target point faces. A quadrant is calcu-
lated using a vector being transformed form the Euler angles into the 
cartesian xyz system [3], whereby

The following manually selected high-level actions are suitable
for a high-level object orientation task.
1) lift-up
2) move first quadrant up = pos. rotation around x-axis
3) move second quadrant up = pos. rotation around y-axis
4) move third quadrant up = neg. rotation around x-axis
5) move fourth quadrant up = neg. rotation around y-axis
6) rotate right
7) rotate left
8) open grasp = lowering

Low-level actors learned to rotate the object around the z-axis or 
move a point in a given quadrant upwards. The rotation strategy of 
high-level action number seven can be seen in Fig 3.

Fig. 2 Definition of the four quad-
rants for the location of the tar-
get point to be rotated upwards.

Fig. 3 �High-level rotation (e.g. move the object around thez-axis). A rotation 
strategy found by the agent repeats thefollowing low-level actions: 
(3,7), (7,4), (7,1), (7,3), (4,7), (7,2).

In order to save time, to preserve the hardware and for a better under-
standing of the physics, a gripper simulation was developed. Another 
advantage is the parallel evaluation of multiple learning algorithms. 
For this task we evaluated the simulation tools OPENRave [13], 
Gazebo [14] and GraspIt! [15]. Most tools have their benefits in high-
level planing or inverse kinematics not required here. Direct physics 
simulation is the best way of manipulating physics configurations to 
achieve a plausible behavior with soft contact fingertips. Therefore for 
the gripper simulation we used the ODE physics engine. A drawback 

of rigid body physics is the collision behavior of solid objects. This 
problem can be solved using contact joints with a springdamper  
system. The simulation uses the pyOpenGL and the pyODE wrapper 
for rapid prototyping and visualizing the manipulation results. The 
simulation is used in an RL glue [16] environment. The target object 
and the 3D gripper model can be seen in Fig. 4. Any hardware changes 
can be simulated (e.g. top mounted gripper) before the hardware is 
actually changed.

V Simulation
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Due to the dynamics of the pneumatic system, the real control is  
20 times slower than the simulation.

 A. low-level manipulation experiment 
The learning result of a z-axis rotation can be found in Fig. 5 using  
different model-free temporal-difference tabular learning agents. 

1) Continuous vs. discrete state space: By using a state discretization, 
the tabular learning algorithm leads to a memory consumption prob-
lem of storing a Q(s, a)-table of size 512  49 (45634 MB). Moreover, 
additional information is not yet included (object height, force sensor 
of fingertips). Thus we compared the following methods for approxi-
mating the Q-table:  
•	TileCoding  
•	RBFs [17]  
•	LSPI (Least-Squares Policy Iteration [18]) 

We applied TileCoding[12] with 8 partitions and 16 tilings. The com-
pared RBF learning agent uses 412 x 49 radial basis functions to learn 
value function approximations. The simulation results are shown in 
Fig 6. The TileCoding-based agent has robust learning results with the 
average reward per step being comparable to the tabular learning 
algorithms (see Fig. 5). Therefore a tabular agent using a discrete 
state space was selected for low-level learning.

B. High-level manipulation experiment
As described earlier, high-level learning uses the previously learned 
low-level actions. This is an episodic discrete task. After 50 learning 
episodes the agent converges towards a robust policy (see Fig. 7).  
The robustness is quite high. Once the object is lifted initially, the 
gripper may drop the sphere in one of about 200 attempts, what can 
be seen in Fig. 7 after 40 episodes. When the object hits the bottom, 
the agent needs more steps to lift the object again to the required 
manipulation height.

C. Learning time
Manipulation of the sphere to the desired orientation with the target 
point on top requires about 12 high-level actions and about 60  
low-level actions. Due to hardware speed limitations this results  
in a time of about 30 seconds. The complete learning phase takes 
around 9 hours considering that all eight high-level actions are 
learned separately. The learning process of the high-level manipula-
tion requires only one hour. 

VI Experimental results

Fig. 4 Gripper simulation.

Fig. 5 	 �Learning high-level action (discrete state space). The reward per  
step shows the amount of rotation a single action has performed  
in the goal direction. The curves show single execution of different  
discrete learning agents with different learning parameters.

Fig. 6	  �Learning high-level action (continuous state space). The 
reward per steps shows the amount of rotation a single action 
has performed in the goal direction. The curves show different 
continuous learning agent with different learning parameters.

Fig. 7	� Learning high-level manipulation for a given goal orientation. The 
blue dots represent the required number of high-level actions to 
achieve the goal orientation. Outliers are due to the sphere being 
dropped during manipulation. After about 15 episodes a robust 
strategy has been found.
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As the results show we successfully solved a highdimensional object 
manipulation task using RL. This success was due to a hierarchical 
decomposition of the task and an efficient alternation of hardware 
development and machine learning. In the future we want to learn ini-
tial policies in the simulation which are then transferred to the hard-

ware and improved by further RL. We may also provide hand-coded 
initial policies to be improved by RL on the hardware. Our current  
policy learning approach works with an underlying classical state  
control. As an alternative, we want to use RL for learning basic actions 
which directly control the pressure levels on the valves.

VII Conclusion
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