仿生學家團隊首先注意到的是蝠鱝的胸鰭。蝠鱝雖然生活在水中,但當它游動時,胸鰭卻如同翅膀般上下拍打。。2007 年,我們將此原理應用於 Air_ray。這種人造鰭片採用氣流優化式設計,可提高空氣動力效率,同時可讓翅膀靈活扭轉,確保發揮所有力量。一台伺服馬達,沿著縱向交替驅動兩個側翼,使羽翼上下擺動。另一個伺服馬達驅動拍打著翅膀,沿橫向軸旋轉,由此操控 Air_ray 向後移動。藉著 Fin Ray Effect® 輕巧的設計,使氦氣的浮力與拍打翅膀產生的驅動力,讓 Air_ray 在空氣中移動時如同蝠鱝在水中游動。
2009 年開發的 AirPenguin 也採用類似原理。它們運用的飛行技術與其生物模型的游動技巧相似。被動扭轉翅膀可產生正向與反向推力。
AirPenguin 是第三組可以自主飛行的產品,它們漂浮於指定空間內,空間範圍由超音波發射站進行監控。這些「企鵝」可在此空間內自由移動。
微電腦控制器讓這些「企鵝」可以自主地或根據特定規則探索這個空間。
However different the flying behaviour of animals in the natural world may be, when transferring it to technology, the major challenges are always the lightweight design and functional integration. With the BionicFlyingFox, whose articulation points of the heavily loaded kinematic system are all on one plane so that the wings can be folded like scissors, Festo has now deciphered all the different types of flying found in the animal world. But nature provides many other unique solutions which will inspire the bionics team to find new technical solutions in the future.